Lecture 1: Kolmogorov's construction of diffusion processes

Brownian motion

Definition 1

 $(W_t)_{t\geq 0}$ is a stochastic process satisfying:

1. Stationary independent increments and Gaussian property: For t > s, the increment $W_t - W_s$ follows a normal distribution with mean 0 and variance $(t - s)I_{d \times d}$, and the increment $W_t - W_s$ is independent of the process $(W_u)_{0 \leq u \leq s}$ before time s;

2. Path continuity: $(W_t)_{t\geq 0}$ is almost surely continuous; Usually, we assume $W_0 = 0$, in which case, W is called standard Brownian motion.

Theorem 2 (Kolmogorov's consistency theorem)

Let E be a standard measure space. Assume that we are given for every $t_1, ..., t_n \in \mathbf{T}$ a probability measure $\mu_{t_1 \cdots t_n}$ on E^n , and that these probability measures satisfy:

(i) for each $\tau \in S_n$ and $A_i \in \mathcal{E}$,

$$\mu_{t_1\cdots t_n}(A_1 \times \ldots \times A_n) = \mu_{t_{\tau(1)}\cdots t_{\tau(n)}}(A_{\tau(1)} \times \ldots \times A_{\tau(n)});$$

(ii) for each $A_i \in \mathcal{E}$,

$$\mu_{t_1\cdots t_n}(A_1\times\ldots\times A_{n-1}\times E)=\mu_{t_1\cdots t_{n-1}}(A_1\times\ldots\times A_{n-1}).$$

Then, there is a unique probability measure \mathbf{P} on $(E^{\mathbf{T}}, \mathcal{E}^{\mathbf{T}})$ such that for $t_1, ..., t_n \in \mathbf{T}, A_1, ..., A_n \in \mathcal{E}$:

$$\mathbf{P}(f(t_1) \in A_1, \dots, f(t_n) \in A_n) = \mu_{t_1,\dots,t_n}(A_1 \times \dots \times A_n).$$

Theorem 3 (Kolmogorov's continuity theorem)

Let I = [0,T], and let p > 1 and $\beta \in (1/p, 1)$. Assume $(Y_t \in \mathbb{R}^d)_{t \in I}$ satisfies

$$\mathbf{E}|Y_s - Y_t|^p \leqslant C|t - s|^{1 + \beta p}, \quad \forall t, s \in I.$$
(1)

Then there exists a version of Y, say X (for each $t \in I$, $\mathbf{P}(X_t = Y_t) = 1$), such that

$$\mathbf{P}\left(\sup_{t\in I}\frac{|X_t-X_s|}{|t-s|^{\alpha}}\leqslant K\right)=1,$$

where $\alpha \in (0, \beta - 1/p)$, $K = K(\alpha, \beta, p, C, I, \omega)$ and $\mathbf{E}K^p < \infty$.

Markov processes

Definition 4

A homogeneous transition function on (E, \mathcal{E}) is a collection $P_t, t \ge 0$ of transition probabilities on (E, \mathcal{E}) such that

$$P_{s+t} = P_s P_t, \quad s, t \ge 0$$

A process X is Markov with transition function $P = (P_t)_{t \ge 0}$, and with respect to a filtered probability space $(\Omega, \mathcal{F}, (\mathcal{F}_t)_{t \ge 0}, \mathbf{P})$ if it is adapted and

$$\mathbf{E}\left(f(X_t) \mid \mathcal{F}_s\right) = P_{t-s}f(X_s), \quad t > s.$$

The identity $P_{s+t} = P_s P_t$ is known as the Chapman-Kolmogorov equation.

Proposition 1

Let (E, \mathcal{E}) be a measurable space, and $\Omega = E^{\mathbb{R}_+}$. Denote its coordinate process by X,

$$X_t \colon \Omega \to E, \quad \omega \mapsto X_t(\omega) = \omega(t).$$

Also, let \mathcal{F}^0 be the σ -algebra generated by $\{X_t: t \in \mathbb{R}_+\}$ and, for each $t \ge 0$, let \mathcal{F}^0_t be the σ -algebra generated by $\{X_s: s \le t\}$. So, $(\mathcal{F}^0_t)_{t\ge 0}$ is a filtration on the measurable space (Ω, \mathcal{F}^0) with respect to which X is adapted. Then, for every transition function $(P_t)_{t\ge 0}$ and probability distribution μ on E, there is a unique probability measure \mathbb{P} on (Ω, \mathcal{F}^0) under which X is a Markov process with transition

function $(P_t)_{t\geq 0}$ and initial distribution μ .

For any times $0 = t_0 < t_1 < \cdots < t_n$ and bounded measurable function $f: E^{n+1} \to \mathbb{R}$,

$$\mathbf{E}[f(X_{t_0},\ldots,X_{t_n})]$$

= $\int \int \cdots \int f(x_0,\ldots,x_n) P_{t_n-t_{n-1}}(x_{n-1},\mathrm{d}x_n)$
 $\cdots P_{t_1-t_0}(x_0,\mathrm{d}x_1)\mu(\mathrm{d}x_0).$

Diffusion processes

Assumption 1

There exists $\alpha \in (0,1)$ and $\Lambda > 1$ such that

$$\Lambda^{-1}|\xi|^2 \leqslant a_{ij}\xi_i\xi_j \leqslant \Lambda|\xi|^2$$

and

$$\|a\|_{C^\alpha}=N_1<\infty,\quad \|b\|_{L^\infty}=N_2<\infty.$$

Put

$$\mathbb{D} = \{(t, x, y) : 0 \leqslant t \leqslant 1, x, y \in \mathbb{R}^d, x \neq y\}.$$

Theorem 5 (Heat Kernel estimate I)

There is a unique continuous function $p(t, x, y) \in \mathbb{D}$ such that

$$\partial_t p(\cdot, y) = Lp(\cdot, y), \quad y \in \mathbb{R}^d.$$

Moreover,

(i) for any $f \in C_0(\mathbb{R}^d)$, $P_t f \to f$ uniformly. (ii)

$$p \ge 0$$
 and $\int_{\mathbb{R}^d} p(t, x, y) dy = 1$,

(iii)

$$p(t+s, x, y) = \int_{\mathbb{R}^d} p(t, x, z) p(s, z, y) dz$$

(iv)

$$t^{-\frac{d}{2}} \exp(-C|x|^2/t)) \lesssim p(t, x, y) \lesssim t^{-\frac{d}{2}} \exp(-|x|^2/(Ct)))$$