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Preface

The primary motivation for writing this lecture note is to introduce graduate
students to the historical background, modern mathematical treatment, and cer-
tain analytical applications of diffusion processes. During the preparation, the
main reference was Richard Bass’s book Diffusions and Elliptic Operators, which
provided a solid foundation and valuable insights.

Given the time constraint of a ten-week short course, it is impossible to cover
all aspects of this rich subject in depth. Therefore, I have selected a number of
fundamental and interesting topics and reorganized them in my own way to form
the content of these notes. My hope is that this material will offer a clear and
engaging entry point into the theory of diffusion processes for students encountering
it for the first time.

Guohuan Zhao
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CHAPTER 1

Construction of Diffusion processes I

1.1. Brownian Motion

The Brownian motion is a continuous stochastic process characterized by inde-
pendent increments that follow a normal distribution. It is widely used to model
the irregular motion of tiny particles suspended in a fluid. As one of the funda-
mental concepts in stochastic analysis, Brownian motion serves as a cornerstone for
understanding more complicate stochastic processes.

In physics, Brownian motion was discovered in 1827 by the British botanist
Robert Brown. While observing pollen particles suspended in water under a con-
ventional microscope, he noticed their irregular motion. Since 1860, numerous
scientists have studied this phenomenon and identified the following key character-
istics of Brownian motion:

(1) The motion of the particles consists of translation and rotation;
(2) The movements of the particles are apparently uncorrelated, even when

the particles approach each other to distances smaller than their diame-
ters;

(3) The smaller the particles, the lower the viscosity of the liquid, or the
higher the temperature, the more active the motion of the particles;

(4) The composition and density of the particles have no effect on their mo-
tion;

(5) The motion of the particles never stops.

In 1905, Einstein proposed a related theory. His theory has two parts: the
first part defines the diffusion equation for Brownian particles, where the diffusion
coefficient is related to the mean square displacement of the Brownian particles,
and the second part describes the relationship between the diffusion coefficient and
measurable physical quantities. Here we briefly introduce the first part: determin-
ing the distance a Brownian particle moves in a given time. Classical mechanics
cannot determine this distance because a Brownian particle will be subjected to a
large number of collisions, approximately 1014 collisions per second. Einstein con-
sidered the position of the particle in space at time t as a random variable Xt, and
let ρ(t, x) be the density of Xt. Assume τB is the relaxation time, and ∆t ≫ τB .
The increment Xt+∆t − Xt over the time interval ∆t is also a random variable,
and its probability density is assumed to be φ∆t (depending only on ∆t). For a
homogeneous liquid, we can naturally assume that φ∆t is rotationally symmetric.

1



2 1. CONSTRUCTION OF DIFFUSION PROCESSES I

Using Taylor expansion:

ρ(t, x) + ∂tρ(t, x)∆t ≈ρ(t+∆t, x) =

ˆ
R3

ρ(t, x− y)φ∆t(y)dy

≈ρ(t, x)

ˆ
R3

φ∆t(y)dy −∇ρ(t, x) ·
ˆ
R3

yφ∆t(y)dy

+
1

2
∂2
yiyj

ρ(t, x)

ˆ
R3

yiyjφ∆t(y)dy

=ρ(t, x) +
1

2

ˆ
R3

|y|2φ∆t(y)dy∆ρ(t, x).

Therefore,

∂tρ =

´
R3 |y|2φ∆t(y)dy

2∆t
∆ρ.

From both theoretical and experimental perspectives, it is reasonable to assume
that ν = 1

2∆t

´
R3 |y|2φ∆t(y)dy is a constant, called the diffusion coefficient of the

Brownian particle. Thus, the above equation can be written as:

∂tρ = ν∆ρ, ρ(0, x) = f(x).

The solution to this heat equation is:

ρ(t, x) =

ˆ
R3

1

(4πνt)3/2
e−

(x−y)2

4νt f(y)dy.

From this, we obtain that if X0 = x, then the distribution of Xt is a standard
Gaussian distribution. The second part of Einstein’s theory relates the diffusion
constant to physically measurable quantities, such as the mean square displacement
of the particle over a given time interval. This result allows for the experimental
determination of Avogadro’s number and, consequently, the size of molecules. How-
ever, we will not discuss this further here.

1.1.1. Mathematical Definition of Brownian Motion. Note that Ein-
stein did not explicitly establish a mathematical model for Brownian motion. This
problem was solved by Wiener.

Definition 1.1. (Wt)t⩾0 is a stochastic process satisfying:

(1) Stationary independent increments and Gaussian property: For
t > s, the increment Wt −Ws follows a normal distribution with mean 0
and variance (t − s)Id×d, and the increment Wt − Ws is independent of
the process (Wu)0⩽u⩽s before time s;

(2) Path continuity: (Wt)t⩾0 is almost surely continuous;

Usually, we assume W0 = 0, in which case, W is called standard Brownian motion.

Of course, a natural mathematical question is whether such a stochastic process
exists.

A stochastic process defined on (Ω,F ,P) taking value in a measurable space
(E, E) can be understood in various ways. It involves a collection of random vari-
ables Xt ∈ E indexed by a parameter set T (usually, T = N or R+), where Xt

is a measurable map from (Ω,F ,P) to (E, E) for each t ∈ T. The parameter
set T typically represents time and can be discrete or continuous. The process
can also be regard as a measurable map from (Ω,F ,P) to the space of functions
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ET. The Kolmogorov σ-field on ET is the smallest σ-field making the projections
πt : ET ∋ f 7→ f(t) ∈ E measurable. This definition ensures that a random
map Ω ∋ ω 7→ X·(ω) ∈ ET is measurable if its component random variables
Xt : Ω → E are measurable for all t ∈ T. Therefore, the mapping ω 7→ X·(ω)
induces a measure on (ET, ET) denoted by P. The underlying probability model
(Ω,F ,P) is replaceable by the canonical model (P, ET, ET) with a specific choice
of Xt(f) = πt(f) = f(t). In simpler terms, a stochastic process is just a probability
measure P on (ET, ET).

Another point of view is that the only relevant objects are the joint distributions
of (Xt1 , Xt2 , · · · , Xtn) for every n and every finite subset I = (t1, t2, ..., tn) of T.
These can be specified as probability measures µI on Rn. These µI cannot be
totally arbitrary. If we allow different permutations of the same set, so that I and
I ′ are permutations of each other then µI and µI′ should be related by the same
permutation. If I ⊆ I ′, then we can obtain the joint distribution of (Xt)t∈I by

projecting the joint distribution of (Xt)t∈I′ from Rn′
to Rn where n and n′ are

the cardinalities of I and I ′ respectively. A stochastic process can then be viewed
as a family (µI) of distributions on various finite dimensional spaces that satisfy
the consistency conditions. A theorem of Kolmogorov says that this is not all that
different. Any such consistent family arises from a P on (ET, ET) which is uniquely
determined by the family (µI).

Definition 1.2. We say A measurable space (E, E) is said to be standard if there
exists a Polish space X such that (E, E) is isomorphic (as a measurable space) to
(X,B(X)).

Theorem 1.3 (Kolmogorov’s consistency Theorem, cf. [Yan21]). Let E be
a standard measure space. Assume that we are given for every t1, ..., tn ∈ T a
probability measure µt1···tn on En, and that these probability measures satisfy:

(i) for each τ ∈ Sn and Ai ∈ E,

µt1···tn(A1 × ...×An) = µtτ(1)···tτ(n)
(Aτ(1) × ...×Aτ(n));

(ii) for each Ai ∈ E,

µt1···tn(A1 × ...×An−1 × E) = µt1···tn−1
(A1 × ...×An−1).

Then, there is a unique probability measure P on (ET, ET) such that for t1, ..., tn ∈
T, A1, ..., An ∈ E: P(f(t1) ∈ A1, ..., f(tn) ∈ An) = µt1,...,tn(A1 × ...×An).

Let T = R+ and E be a Polish space. By Theorem 1.3, we can define a
probability measure P on ER+ such that the canonical process Xt(f) = f(t) satisfies
the conditions in Theorem 1.3. However, whether the measure is concentrated on
the space of continuous functions is not a simple question. In fact, since T = R+

is uncountable the space of bounded functions, continuous functions, etc., are not
measurable sets of ER+ . They do not belong to the natural σ-field. Essentially,
in probability theory, the rules involve only a countable collection of sets at one
time, and any information that involves the values of an uncountable number of
measurable functions is beyond reach. There is an intrinsic reason for this. In
probability theory, we can always change the values of a random variable on a set
of measure 0, and we have not changed anything significant. Since we are allowed
to mess up each function on a set of measure 0, we have to assume that each
function has indeed been messed up on a set of measure 0. If we are dealing with
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a countable number of functions, the ‘mess up’ has occurred only on the countable
union of these individual sets of measure 0, which, by the properties of a measure, is
again a set of measure 0. On the other hand, if we are dealing with an uncountable
set of functions, then these sets of measure 0 can possibly gang up on us.

Often, we aim to find a version of stochastic process with continuous trajecto-
ries, or equivalently, to establish a measure P on C(R+;Rd) with the natural σ-field.
However, this is not always achievable. We are looking for sufficient conditions on
the finite dimensional distributions (µI) to ensure the existence of P on C(R+;Rd).

Theorem 1.4 (Kolmogorov). Let I = [0, T ], and let p > 1 and β ∈ (1/p, 1).
Assume (Yt ∈ Rd)t∈I satisfies

(1.1) E|Ys − Yt|p ⩽ c|t− s|1+βp, ∀t, s ∈ I.

Then there exists a version of Y , say X (for each t ∈ I, P(Xt = Yt) = 1), such
that

P

(
sup
t∈I

|Xt −Xs|
|t− s|α

⩽ K

)
= 1,

where α ∈ (0, β − 1/p), K = K(α, β, p, c, I, ω) and EKp < ∞.

Proof. Regard Y as a measurable function from Ω× I to Rd. By Lemma 1.5
below, there is a null set N ⊆ Ω and a measurable function X : Ω× I → Rd, such
that for each ω /∈ N ,

L 1 ({t ∈ I : Xt(ω) ̸= Yt(ω)}) = 0,

and X(ω)· is a continuous function. Moreover,

∥X·(ω)∥Cα(I) ≲ K(ω) :=

(¨
I×I

|Yt(ω)− Ys(ω)|p

|t− s|2+αp
dsdt

)1/p

∈ Lp(P).

By Fubini theorem, there exists a L 1-null set N ⊆ I, such that for each t /∈ N ,

P(Xt ̸= Yt) = 0. For any t0 ∈ N , by (1.1), one can see that Ytn
P−−−−−−−−→

I\N∋tn→t0
Yt0 .

On the other hand, Ytn
a.s
= Xtn → Xt0 , so we have Xt0

a.s
= Yt0 . Therefore, X is a

continuous version of Y . □

Lemma 1.5 (Fractional Sobolev inequality). Let R > 0, p > n and s ∈ (n/p, 1).
Let f : BR → Rd be a measurable function. Assume¨

BR×BR

|f(x)− f(y)|p

|x− y|n+sp
dxdy < ∞.

Then there exists a version of f , say f̃ , such that

(1.2) sup
x,y∈BR

|f̃(x)− f̃(y)|
|x− y|s−

n
p

⩽ C

(¨
BR×BR

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

,

Here C only depends on n, s, p and R.

Thanks to Theorem 1.4 and the discussion after Theorem 1.3, we can first
construct a probability measure P on Ω = (Rd)R+ such that

P(Yt1 ∈ A1, · · · , Ytn ∈ An)

=

ˆ
A1

· · ·
ˆ
An

pt1(x1)pt2−t1(x1 − x2) · · · ptn−tn−1
(xn−1 − xn)dx1 · · · dxn,
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where Yt(ω) = ω is the canonical process, and pt(x) = (2πt)−
d
2 exp(−|x|2/(2t)).

Then using Theorem 1.4, one can establish the existence of an α-Hölder continuous
version of Y with α ∈ (0, 1

2 ), which is a Brownian motion. Once we get such a

continuous version, in fact we obtain a probability measure P on C(R+;Rd), under
which the canonical process is a Brownian motion.

1.2. Markov Processes

Intuitively speaking, a processX is Markov if, given its whole past up until some
time s, the future behaviour depends only its state at time s. To make this precise,
let us suppose that X takes values in a measurable space (E, E) and, to denote the
past, let Ft be the sigma-algebra generated by {Xs : s ⩽ t}. The Markov property
then says that, for any times s ⩽ t and bounded measurable function f : E → R,
the expected value of f(Xt) conditional on Fs is a function of Xs. Equivalently,

(1.3) E [f(Xt) | Fs] = E [f(Xt) | Xs] , a.s.

More generally, this idea makes sense with respect to any filtered probability space
F = (Ω,F , (Ft)t⩾0,P). A process X is Markov with respect to F if it is adapted
and (1.3) holds for times s ⩽ t.

Continuous time Markov processes are usually defined in terms of transition
functions. These specify how the distribution of Xt is determined by its value at
an earlier time s. To state the definition of transition functions, it is necessary to
introduce the concept of transition probabilities.

Definition 1.6. A (transition) kernel Q on a measurable space (E, E) is a map

Q :E × E → R+ ∪ {∞},
(x,A) 7→ N(x,A)

such that for each x ∈ E, the map A 7→ Q(x,A) is a measure, and for each A ∈ E ,
the map x 7→ N(x,A) is measurable. If, furthermore, Q(x,E) = 1 for all x ∈ E,
then Q is a transition probability.

For any f ∈ B(E), we set

Qf(x) =

ˆ
E

f(y)Q(x, dy).

A transition probability, then, associates to each x ∈ E is a probability measure
on (E, E). This can be used to describe how the conditional distribution of a process
at a time t depends on its value at an earlier time s by

P(Xt ∈ A | Fs) = Q(Xs, A).

A Markov process is defined by a collection of transition probabilities (Ps,t)t⩾s,
describing how it goes from its state at time s to a distribution at time t. We only
consider the homogeneous case here, meaning that Ps,t depends only on the size
t− s of the time increment, so the notation Ps,t can be replaced by Pt−s.

Definition 1.7. A homogeneous transition function on (E, E) is a collection Pt, t ≥
0 of transition probabilities on (E, E) such that

Ps+t = PsPt, s, t ⩾ 0
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A process X is Markov with transition function P = (Pt)t⩾0, and with respect
to a filtered probability space (Ω,F , (Ft)t≥0,P) if it is adapted and

E (f(Xt) | Fs) = Pt−sf(Xs), t > s.

The identity Ps+t = PsPt is known as the Chapman-Kolmogorov equation, and is
required so that the transition probabilities are consistent with the tower rule for
conditional expectations. Alternatively (Pt)t⩾0 forms a semigroup.

The distribution of a Markov process is determined uniquely by its transition
function and initial distribution.

Proposition 1.8. Suppose that X is a Markov process on (E, E) with transition
function P such that X0 has distribution µ. Then, for any times 0 = t0 < t1 < · · · < tn
and bounded measurable function f : En+1 → R,

E[f(Xt0 , . . . , Xtn)]

=

ˆ ˆ
· · ·
ˆ

f(x0, . . . , xn)Ptn−tn−1
(xn−1,dxn) · · ·Pt1−t0(x0,dx1)µ(dx0).

Proposition 1.9. Let (E, E) be a measurable space, and Ω = ER+ . Denote its
coordinate process by X,

Xt : Ω → E, ω 7→ Xt(ω) = ω(t).

Also, let F0 be the σ-algebra generated by {Xt : t ∈ R+} and, for each t ⩾ 0, let
F0

t be the σ-algebra generated by {Xs : s ≤ t}. So, (F0
t )t⩾0 is a filtration on the

measurable space (Ω,F0) with respect to which X is adapted.
Then, for every transition function (Pt)t⩾0 and probability distribution µ on

E, there is a unique probability measure P on (Ω,F0) under which X is a Markov
process with transition function (Pt)t⩾0 and initial distribution µ.

Remark 1.10. The superscripts ′0′ just denote the fact that we are using the un-
completed σ-algebras. Once the probability measure has been defined, it is standard
practice to complete the filtration, which does not affect the Markov property.

The unique measure with respect to which X is Markov with the given transi-
tion function and initial distribution is denoted by Pµ, and expectation with respect
to this measure is denoted by Eµ. In particular, if µ = δx then we write Px ≡ Pδx

and, similarly, write Ex for Eδx .

1.3. Diffusions

Diffusion is a physical phenomenon that describes the process by which sev-
eral substances mixed together tend to move towards equilibrium. For example,
Brownian motion describes the process by which pollen particles suspended in a
liquid gradually ”diffuse” to a ”uniform” distribution. A natural question arises:
if the physical properties of the liquid at different times and locations affect the
pollen particles differently, for instance, in a flowing liquid, what motion laws will
the pollen particles follow?

The diffusion process does not have a unified mathematical definition, but its
core is a Markov process with continuous trajectories. Similar to Brownian motion,
the evolution of its macroscopic properties can be characterized by establishing
equations that satisfy the transition probabilities. Alternatively, by tracking the
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trajectory of each pollen particle, a probability space can be constructed, and sto-
chastic differential equations (SDE) can be established to describe the motion laws
they obey from a microscopic perspective.

We will first present its construction using the first method, which can be traced
back to Kolmogorov’s early groundbreaking papers on Markov processes.

1.3.1. Fokker-Planck-Kolmogorov equations. Compared to Brownian mo-
tion, we give three conditions for a time-homogeneous diffusion process Xt: for any
ε > 0,

(1.4) lim
t→0

t−1 sup
x∈Rd

Pt(x,B
c
ε(x)) = 0,

(1.5) lim
t→0

t−1

ˆ
|y−x|⩽ε

(y − x)Pt(x, dy) = b(x),

(1.6) lim
t→0

(2t)−1

ˆ
|y−x|⩽

(y − x)i (y − x)j Pt(x,dy) = aij(x) i, j = 1, · · · , d.

b and a are called the drift coefficient and diffusion coefficient of the diffusion process
(Xt)t⩾0, respectively. In the sequel, we always assume that

a, b ∈ L∞.

We want to derive the evolution laws that the transition probabilities should
satisfy. Let f ∈ C2

b (Rd). Then

Ptf(x)− f(x)

t

=
1

t

ˆ
|y−x|⩽ε

(f(y)− f(x))Pt(x, dy) +
1

t

ˆ
|y−x|>ε

(f(y)− f(x))Pt(x,dy) =: I1 + I2.

By Taylor’s expansion theorem, and using (1.5) and (1.6), we have

I1 =
1

t

ˆ
|y−x|⩽ε

(y − x)iPt(x, dy) ∂if(x)

+
1

2t

ˆ
|y−x|⩽ε

(y − x)i(y − x)jPt(x, dy) ∂ijf(x) + o(1)

−→b(x) · ∇f(x) + aij(x)∂ijf(x), t → 0.

Applying (1.4), we have I2 → 0, as t → 0. Therefore,

(1.7) lim
t→∞

Ptf(x)− f(x)

t
= aij(x)∂ijf(x) + b(x) · ∇f(x) =: Lf(x), f ∈ C2

b (Rd).

Assume that

Pt(x, dy) = p(t, x, y)dy and Ptf ∈ C2
b , t ⩾ 0.

Thanks to the Chapman-Kolmogorov equation and (1.7), one can verify that

∂tPtf(x) = LPtf(x), lim
t→0

Ptf(x) = f(x),

which can be read as

(1.8) ∂tp(·, y) = Lp(·, y), lim
t→0

p(t, ·, y) = δy.
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Kolmogorov’s idea for constructing the diffusion process corresponding to L
involves solving the partial differential equation (PDE) (1.8) (in fact his solves the
forward equation in his paper) to obtain the density of the process, p(t, x, ·).

We need to introduce some notations. For any y ∈ Rd, put

La(y)f(x) := aij(y)∂ijf(x)

and

py0(t, x, z) :=
[
πt d
√
det(a(y))

]− d
2

exp

(
−
a−1
ij (y)(x− z)i(x− z)j

t

)
.

Let

D = {(t, x, y) : 0 ⩽ t ⩽ 1, x, y ∈ Rd, x ̸= y}.
For any λ > 0, γ ∈ R, put

ϱλ,γ(t, x) := t(−d+γ)/2e−
λ|x|2

t , t > 0, x ∈ Rd.

ϱλ is denoted by ϱλ for simplicity. For any p(1), p(2), · · · , p(n) : D → R, define[
p(n) ⊗ · · · ⊗ p(2) ⊗ p(1)

]
(t, x, y)

:=

ˆ
0<τ1<···<τn−1<t

ˆ
Rnd

p(n)(t− τn−1, x, zn−1) · · ·

p(2)(τ2 − τ1, z2, z1)p
(1)(τ1, z1, y)dz1 · · · dzn1

dτ1 · · · dτn−1.

It is easy to verify that

∂tp
y
0(·, z) = La(y)p

y
0(·, z), y, z ∈ Rd.

Recall that p satisfies (1.8), therefore,

∂tp = La(y)p+ (L− La(y))p.

Formally, using Duhamel’s formula, we have

p(t, x, y) = py0(t, x, y) + [py0 ⊗ (L− La(y))p](t, x, y),

p(·, y) =
∞∑

n=0

[ =:qn

py0 ⊗
︷ ︸︸ ︷
[(L− La(y))p

y
0]

⊗n︸ ︷︷ ︸
=:pn

]
(·, y) = [py0 + py0 ⊗ q] (·, y), q =

∑
n=1

qn

(1.9)

and

(1.10) p(·, y) =
[
py0 + py0 ⊗ (L− La(y))p

]
(·, y), y ∈ Rd.

For notion simplicity, we omit the superscript y below.
We attempt to show that the infinite series in (1.9) do convergence (in some

sense), and p given by (1.9) satisfying (1.10) is a fundamental solution to (1.8),
provided that the coefficients satisfies

Assumption 1. There exists α ∈ (0, 1) and Λ > 1 such that

Λ−1|ξ|2 ⩽ aijξiξj ⩽ Λ|ξ|2

and

∥a∥Cα = N1 < ∞, ∥b∥L∞ = N2 < ∞.
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1.3.2. Heat Kernel Estimate. In this subsection, we use the classical Levi’s
freezing coefficients method to prove that (1.8) admits a nice solution provided that
the coefficients a and b satisfies Assumption 1.

For simplicity, we always assume b = 0 in the sequel. Readers interested in the
general case can work out the details themselves.

Theorem 1.11. Under Assumption 1, there is a unique continuous transition
density function p(t, x, y) ∈ D such that

∂tp(·, y) = Lp(·, y) and lim
t→0

p(t, x, y) = δy, y ∈ Rd.

Moreover,

(i) for any f ∈ C0(Rd), Ptf → f uniformly;
(ii) for any t ∈ [0, 1], x ∈ Rd

(1.11) p(t, x, ·) ⩾ 0 and

ˆ
Rd

p(t, x, y)dy = 1;

(iii) for any t, s ∈ [0, 1] and x, y ∈ Rd

(1.12) p(t+ s, x, y) =

ˆ
Rd

p(t, x, z)p(s, z, y)dz;

(iv) there is a constant C > 1 only depending on d, α,Λ and Ni such that such
that for any (t, x, y) ∈ D,

(1.13) C−1t−
d
2 exp(−C|x|2/t)) ⩽ p(t, x, y) ⩽ Ct−

d
2 exp(−|x|2/(Ct))).

Lemma 1.12. For any k ∈ N, there is a constant λk > 0 such that

|∇k
xp0| ≲ ϱλk,−k

and for any t ∈ [0, 1], x1, x2, z ∈ Rd and β ∈ (0, 1), it holds that

|∇k
xp0(t, x1, z)−∇k

xp0(t, x2, z)|

≲|x1 − x2|β [ϱλk,−k−β(t, x1, z) + ϱλk,−k−β(t, x2, z)] .

Exercise 1.13. Prove Lemma 1.12.

Lemma 1.14. It holds that

(1.14) |q| ≲ ϱλ,α−2;

For any t ∈ [0, 1], x1, x2, y ∈ Rd and β ∈ (0, 1), it holds that

(1.15) |q(t, x1, y)− q(t, x2, y)| ≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2(t, xi, y).

Proof. We Claim that

(1.16) |qn(t, x, y)| ⩽
(C1Γ(α/2))

n

(λ/π)d(n−1)/2Γ(nα/2)︸ ︷︷ ︸
=:γn

ϱλ,nα−2(t, x− y),

where Γ is the Gamma function, and C1 and λ only depends on d, α,Λ and Ni.
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By Lemma 1.12 and the Hölder regularity of a, we have

|q1(t, x, y)| = |[(L− La(y))p0](t, x, y)| ⩽ C1ϱλ,α−2(t, x, y).

Assume (1.16) holds. This together with the fact that qn+1 = q1 ⊗ qn yields

|qn+1(t, x, y)|

⩽C1γn

ˆ t

0

(t− τ)
α
2 −1τ

nα
2 −1dτ

ˆ
Rd

ϱλ(t− τ, x− z)ϱλ(τ, z − y)dz

=C1

(
πλ−1

)d/2
γnϱλ(t, x− y)

ˆ t

0

(t− τ)
α
2 −1τ

nα
2 −1dτ

=C1

(
πλ−1

)d/2
γnϱλ,(n+1)α−2(t, x− y)B

(nα
2
,
α

2

)
=γn+1ϱλ,(n+1)α−2(t, x− y).

Therefore, we finish the proof for (1.16), which also implies

q =

∞∑
n=1

qn ≲ ϱλ,α−2.

Next, we verify that
(1.17)

|q1(t, x1, y)− q1(t, x2, y)| ≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) , (t, x, y) ∈ D.

If |x1 −x2| >
√
t, then it is a consequence of (1.16). When |x1 −x2| ⩽

√
t, we have

|q1(t, x1, y)− q1(t, x2, y)|
⩽ |a (x1)− a (x2)| ·

∣∣∇2
xp0(t, x1, y)

∣∣+ |a (x2)− a(y)| ·
∣∣∇2

xp0(t, x1, y)−∇2
xp0(t, x2, y)

∣∣
≲ |x1 − x2|α ϱλ2,−2 (t, x1 − y) + |x2 − y|α |x1 − x2| ϱλ3,−3 (t, x2 − y − θ (x1 − x2))

≲ |x1 − x2|β ϱλ,α−β−2 (t, x1 − y) + |x2 − y|α |x1 − x2|β ϱλ,−β−2 (t, x2 − y)

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) .

Therefore, (1.17) holds for any (t, x, y) ∈ D. Noting that q = q1 + q1 ⊗ q, we have

|q(t, x1, y)− q(t, x2, y)|

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y)

+ |x1 − x2|β
ˆ t

0

(t− τ)
α−β

2 −1τ
α
2 −1dτ

∑
i=1,2

ϱλ (t, xi − y)

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) .

□

The above lemma implies that the infinite series in (1.9) do convergence, and
p given by (1.9) satisfying (1.10).

Lemma 1.15. There is a constant λ > 0 such that

(1.18) |p| ≲ ϱλ, |∂tp|+ |∇2
xp| ≲ ϱλ,−2
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and

(1.19) [L− La(y))p](t, x, y) = q(t, x, y).

Proof. Recalling that p = p0 + p0 ⊗ q, by Lemma 1.12, we only need to prove

(1.20) |∇2
xp0 ⊗ q| ≲ ϱλ,α−2.

Note

∇2
x(p0 ⊗ q)(t, x, y) =

ˆ t

0

ˆ
Rd

∇2
xp0(t− τ, x, z) q(τ, z, y) dz dτ

=

ˆ t
2

0

· · ·+
ˆ t

t
2

· · · =: I1 + I2.

Thanks to Lemma 1.12 and Lemma 1.14,

|I1| ≲
ˆ t

2

0

ϱλ,−2(t− τ, x− z)ϱλ,α−2(τ, z − y) dzdτ

≲ϱλ(t, x− y)

ˆ t
2

0

(t− τ)−1τ
α
2 −1dτ ≲ ϱλ,α−2(t, x− y)

Noting that p0(t, x, z) = p0(t, x− z), we haveˆ
Rd

∇k
xp0(t, x, z)dz = 0, k ∈ N.

In view of (1.15), we get

|I2| =

∣∣∣∣∣
ˆ t

t
2

dτ

ˆ
Rd

∇2
xp0(t− τ, x, z) [q(τ, z, y)− q(τ, x, y)] dz

∣∣∣∣∣
≲
ˆ t

t
2

(t− τ)
β
2 −1τ

α−β
2 −1dτ

ˆ
Rd

[ϱλ(τ, y − z) + ϱλ(τ, x− y)] ϱλ(t− τ, x− z)dz

≲ϱλ,α−2(t, x− y).

Therefore, |∇2
xp| ≲ ϱλ,−2. Similarly, one can verify that |∂tp| ≲ ϱλ,−2. □

The above lemma implies

p(t, x, y) = p0(t, x, y) + [p0 ⊗ (L− La(y))p](t, x, y),

which yields that p satisfies ∂tp = Lp.

Proof of Theorem 1.11. (i). It is easy to verify that

v(t, x) :=

ˆ
Rd

p0(t, x, z)f(z)dz

convergence to f uniformly when f ∈ C0(Rd) as t → 0. In the light of (1.14), we
have

(1.21) |p0 ⊗ q| ≲ ϱλ,α,

which yields that ∣∣∣∣ˆ
Rd

(p0 ⊗ q)(t, x, y)f(y)dy

∣∣∣∣ ≲ t
α
2 ∥f∥L∞ → 0.

Therefore, our desired assertion holds, due to the fact that p = p0 + p0 ⊗ q.
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(ii) and (iii) follow directly as consequences of the maximum principle for par-
abolic equations.

(iv) Thanks to Lemma 1.15, we only need to prove the lower bound estimate.
There exists constant T > 0 such that
(1.22)

p(t, x, y) ⩾ p0(t, x, y)−|p0⊗q|(t, x, y) ≳ t−
d
2−t

−d+α
2 ≳ t−

d
2 , |x−y| <

√
t, t ∈ [0, T ].

If |x− y| >
√
t, let Let n be the least integer greater than 4|x− y|/

√
t, i.e. n− 1 ⩽

4|x− y|2/t < n.

xi = x+ (y − x)i/n, Bi := B
(
xi, 8

−1
√

t/n
)

and ti = it/n.

Noting that for all zi ∈ Bi,

|zi − zi+1| ⩽ |zi − xi|+ |xi − xi+1|+ |xi+1 − zi+1| ⩽
√
t/n

2
,

by the on-digonal estimate (1.22), we have

p(ti+1 − ti, zi, zi+1) ⩾ c2(t/n)
− d

2 .

Hence, by the C-K equation, there is a constant c3 ∈ (0, 1) such that

p(t, x, y) ⩾
ˆ
Bn−1

· · ·
ˆ
B1

p(t1, x, z1) · · · p(tn − tn−1, zn−1, y)dz1 · · · dzn−1

⩾
[
c2(t/n)

− d
2

]n [
ωd

(√
t/(64n)

)d]n−1

⩾ t−
d
2 cn3n

d
2

⩾t−
d
2 c

4|x−y|2/t
3 (|x− y|2/t) d

2 ≳ ϱλ(t, x, y).

□



CHAPTER 2

Construction of Diffusion processes II

2.1. Motivation

Kolmogorov’s approach to constructing diffusion processes is purely analytical.
A natural question that arises is whether it is possible to provide a ”microscopic”
construction at the level of trajectories. This was one of the original motivations
for Itô’s introduction of stochastic integrals and stochastic differential equations.

Assume d = 1. Intutively, the diffusion process can be constructed as follows:
Let ∆t be a fixed, small time interval, and consider the following approximation
process:

Xt =X0 + b(X0)t+
√

2a(X0)(Wt −W0), t ∈ [0,∆t);

Xt =X∆t + b(X∆t)(t−∆t) +
√
2a(X∆t)(Wt −W∆t), t ∈ [∆t, 2∆t);

...

Xt =Xk∆t + b(Xk∆t)(t− k∆t) +
√

2a(Xk∆t)(Wt −Wk∆t), t ∈ [k∆t, (k + 1)∆t).

If, as ∆t → 0, the process Xt (which depends on ∆t) converges (in some sense)
to a stochastic process, then formally, the limiting process (still denoted as Xt)
satisfies:

(2.1) Xt = X0 +

ˆ t

0

b(Xt)dt+

ˆ t

0

√
2a(Xt)dWt︸ ︷︷ ︸

?

.

One issue is how to understand the last term in the above equation.

Exercise 2.1. Prove that

P

(
lim sup

t→0

|Wt|
t1/2

= ∞
)

= 1.

When ht is β-Hölder continuous and xt is α-Hölder continuous, if α + β > 1,
then we can prove that the following Riemann sum converges:

n−1∑
k=0

hk(xk+1 − xk).

However, when α+ β < 1, in general, we cannot mathematically prove the conver-
gence of the above Riemann sum.

Note that the paths of Brownian motion are only α-Hölder continuous for
α < 1/2. It is expected that the Hölder exponent of the paths of X will not
exceed 1/2 either. Therefore, unless we uncover more information about the paths

13
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of Brownian motion, we cannot define the second term on the right-hand side of
(2.1) pathwise.

Itô considered a more general problem: Suppose H is an adapted process, how
can we define the following integralˆ 1

0

HsdWs.

Assume Ft = σ(Ws : s ∈ [0, t]), and H is a bounded simple process with respect to

Ft, i.e., Ht = H0I{0}(t) +
∑n−1

i=0 HtiI(ti,ti+1](t), where 0 = t0 < t1 < · · · < tn = 1,

and Hti ∈ Fti . Naturally, we can define
´ t
0
HsdWs =

∑n−1
i=0 Hti(Wt∧ti+1 −Wt∧ti).

Itô observed that t 7→
´ t
0
HsdWs is a martingale and satisfies the isometry property

E

(ˆ t

0

HsdWs

)2

= E

ˆ t

0

H2
sds.

If H is a general adapted process, and there exists a sequence of simple processes
(Hn)n∈N such that

E

(ˆ 1

0

(Hn
s −Hs)

2ds

)
→ 0, n → ∞,

then by Doob’s inequality,

E

(
sup

t∈[0,1]

∣∣∣∣ˆ t

0

Hn
s dWs −

ˆ t

0

Hm
s dWs

∣∣∣∣2
)

⩽ CE

ˆ 1

0

(Hn
s −Hm

s )2ds → 0.

Thus,
´ t
0
Hn

s dWs converges to a continuous martingale, which we define as
´ t
0
HsdWs.

In fact, later we can argue that we can define the integral of a very general adapted
process H with respect to Brownian motion W . Once the integral with respect to
Brownian motion is defined, under very general conditions, we can solve equation
(2.1), providing a probabilistic construction of diffusion processes.

Essentially, Itô utilized the adaptability of the integrand and the martingale
property of Brownian motion. Thus, stochastic analysis injected new vitality into
the development of martingale theory. Kunita and Watanabe extended the theory
of stochastic integrals from the case of Brownian motion to general square-integrable
martingales using the Doob-Meyer decomposition. The Strasbourg school in France
further generalized it to the most general case of semimartingales and established
a general theory of stochastic processes.

Basic results in stochastic analysis will be used in this note are presented in
the next section.

2.2. Basic Stochastic Analysis

Let (Ω,F ,P) be a standard probability space. Let Fn (n ∈ N) be an increasing
sequence of σ-fields. A sequence of random variables Xn is adapted to Fn if for
each n,Xn is Fn measurable. Similarly a collection of random variablesXt (t ∈ R+)
is adapted to Ft if each Xt is Ft measurable. We say the filtration Ft satisfies
the usual conditions if Ft is right continuous (i.e., Ft = Ft+ for all t, where
Ft+ = ∩ε>0Ft+ε ) and each Ft is complete (i.e., Ft contains all P-null sets).

We say τ : Ω → N (R+) ∪ {∞} is a stopping time if τ satisfying {τ ⩽ n} ∈
Fn ({τ ⩽ t} ∈ Ft), for each n ∈ N (t ∈ R+).
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Fτ is a σ-field containing all measurable sets A ∈ cF such that A ∩ {τ ⩽ n} ∈
Fn (A ∩ {τ ⩽ t} ∈ Ft) for all n ∈ N (t ∈ R+).

Definition 2.2. LetXt be a real-valued Ft-adapted processes. If for each t and s <
t, Xt is integrable and E(Xt|Fs) ⩾ (⩽)Xs a.s., then we call Xt is a submartingale
(supermartingale). We say Xt is a martingale if it is both a submartingale and
a supermartingale.

Example 2.3. Let ξ1, ξ2, · · · be a sequence of i.i.d random variable. Set Xn :=∑n
i=0 ξi and Fn := σ(ξ0, · · · ξn).

Below we recall the results about discrete time martingales and submartingales
that will be used. The proof of the subsequent statements can be found in Durrett’s
book [Dur19], and in many other books dealing with discrete time martingales.

Theorem 2.4 (Doob). If Xn ∈ Fn is a submartingale then it can be uniquely
decomposed as Xn = Mn +An, where Mn ∈ Fn is martingale, An = 0, An+1 ⩾ An

almost surely and An is Fn−1-measurable.

The following theorem lies at the basis of all other results for martingales.

Theorem 2.5 (Doob’s Optional stopping theorem). Assume that σ and τ are
two bounded stopping time, and Xt is a submartingale, then E(Xτ |Fσ) ⩾ Xσ∧τ .

Lemma 2.6. Let Xn be a submartingale, and τ be a bounded stopping time and
τ ⩽ K (constant). Then

(i) E(XK |Fτ ) ⩾ Xτ ;
(ii) Xτ∧n is a Fn-submartingale.

Proof. (i). for each A ∈ Fτ , we will show that E(XK ;A) ⩾ E(Xτ ;A). In
fact,

E(Xτ ;A) =

K∑
k=0

E(Xk;A ∩ {τ = k}︸ ︷︷ ︸
∈Fk

) ⩽
K∑

k=0

E(XK ;A ∩ {τ = k}) = E(XK ;A).

(ii). For each A ∈ Fn−1,

E(Xτ∧n;A) =E(Xτ∧n;A ∩ {τ ⩽ n− 1}) +E(Xτ∧n;A ∩ {τ > n− 1})
=E(Xτ ;A ∩ {τ ⩽ n− 1}) +E(Xn;A ∩ {τ > n− 1}︸ ︷︷ ︸

∈Fn−1

)

⩾E(Xτ ;A ∩ {τ ⩽ n− 1}) +E(Xn−1;A ∩ {τ > n− 1})
=E(Xτ∧(n−1);A).

□

Proof of Theorem 2.5. By the above lemma, we haveE(Xτ |Fσ) = E(XK∧τ |Fσ) ⩾
Xσ∧τ . □

Theorem 2.7 (Doob’s inequality). Let Mn be a martingale. If M∗
n := supk⩽n |Mk|,

then

P(M∗
n > λ) ⩽ λ−1E(|Mn|;M∗

n > λ).
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Proof. Let τ = inf{k : |Mk| > λ}. Noting that {M∗
n > λ}} = {τ ⩽ n}, we

have

λP(M∗
n > λ) =λP(τ ⩽ n) ⩽ E(|Mτ |; τ ⩽ n)

⩽E(|Mτ∧n|; τ ⩽ n) ⩽ E(|Mn|;M∗
n > λ).

□

Corollary 2.8. Let Mn be a martingale and T be a stopping time. For each p > 1,
E|M∗

T |p ⩽ CpE|MT |p.

Let a ⩽ b. Set σ1 = inf{n ⩾ 0 : Xn ⩽ a}, τ1 = inf{n > σ1 : Xn ⩾ b},
σ2 = inf{n > τ1 : Mn ⩽ a}, τ2 = inf{n > σ2 : Xn ⩾ b}, . . . , and UN := max{k :
τk ⩽ N}.

Lemma 2.9 (Upcrossing inequality). Suppose that XN is a submartingale, then

(b− a)EUN (a, b) ⩽ E(XN − a)+.

Proof. We only prove the case that a = 0 and Xk ⩾ 0.

XN = XS1∧N︸ ︷︷ ︸
⩾0

+

∞∑
i=1

XTi∧N −XSi∧N︸ ︷︷ ︸
⩾bUN (0,b)

+

∞∑
i=1

XSi+1∧N −XTi∧N︸ ︷︷ ︸
positive expectation

.

□

Upcrossing inequality leads to

Theorem 2.10. If Xn is a submartingale such that supn EX+
n < ∞, then Xn

converges a.s. as n → ∞.

Corollary 2.11. Suppose that X ∈ L1(P,Ω), Fn ↑ F∞, then

lim
n→∞

E(X|Fn) = E(X|F∞), a.s. and in L1.

Example 2.12. For an example of a discrete martingale, let Ω = [0, 1],P Lebesgue
measure, and f an integrable function on [0, 1]. Let Fn be the σ-field generated by
the sets

{[k/2n, (k + 1)/2n) , k = 0, 1, . . . , 2n − 1} .
Let fn = E [f | Fn]. If I is an interval in Fn, shows that

fn(x) =
1

|I|

ˆ
I

f(y)dy if x ∈ I.

fn is a particular example of what is known as a dyadic martingale. Of course,
[0, 1] could be replaced by any interval as long as we normalize so that the total
mass of the interval is 1. We could also divide cubes in Rd into 2d subcubes at each
step and define fn analogously. Such martingales are called dyadic martingales. In
fact, we could replace Lebesgue measure by any finite measure µ, and instead of
decomposing into equal subcubes, we could use any nested partition of sets we like,
provided none of these sets had µ measure 0.

All of the above results also hold for all right continuous martingale
(submartingales) (see [Hua01]).
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Theorem 2.13. Assume X is a continuous submartingale, then there exists a
unique martingale M and a unique continuous increasing adapted process A such
that

A0 = 0, Xt = Mt +At.

If M is a continuous square integrable martingale, then M2 is a submartingale.
Thus, there exists a continuous increasing process, denoted by ⟨M⟩, the quadratic
variation of M , such that M2−⟨M⟩ is a martingale. Particularly, EM2

t −EM2
0 =

E⟨M⟩t.

2.2.1. Stochastic Integral. From now on, unless stated otherwise, our pro-
cesses have continuous paths.

Lemma 2.14. Let Mt be a square integrable martingale (that is, Mt ∈ L2 for every
t ⩾ 0 ). Let 0 ⩽ s < t and let s = t0 < t1 < · · · < tn = t be a division of the
interval [s, t]. Then,

E

[
n∑

i=1

(
Mti −Mti−1

)2 | Fs

]
= E

[
M2

t −M2
s | Fs

]
= E

[
(Mt −Ms)

2 | Fs

]
.

Proof. For every i = 1, . . . , n,

E
[(
Mti −Mti−1

)2 | Fs

]
= E

[
E
[(
Mti −Mti−1

)2 | Fti−1

]
| Fs

]
= E

[
E
[
M2

ti | Fti−1

]
− 2Mti−1E

[
Mti | Fti−1

]
+M2

ti−1
| Fs

]
= E

[
E
[
M2

ti | Fti−1

]
−M2

ti−1
| Fs

]
= E

[
M2

ti −M2
ti−1

| Fs

]
and the desired result follows by summing over i. □

We say that Mt if a local martingale if there exist stopping times τn ↑ ∞
such that Xτn∧t is a martingale for each n ∈ N.

Theorem 2.15. Let Mt be a continuous local martingale. There exists an
increasing process denoted by ⟨M⟩t, which is unique up to indistinguishability, such
that M2

t −⟨M⟩t is a continuous local martingale. Furthermore, for every fixed t > 0,
if πn = {(tn0 , · · · , tnkn

) : 0 = tn0 < tn1 < · · · < tnkn
= t} is an increasing sequence of

subdivisions of [0, t] with mesh going to 0 , then we have

⟨M⟩t = lim
n→∞

kn∑
i=1

(
Mtni

−Mtni−1

)2
in probability. The process ⟨M⟩t is called the quadratic variation of Mt.

Theorem 2.15 is a consequence of the following lemma.

Lemma 2.16. Let Mt be a continuous bounded martingale. Let πn = {(tn0 , · · · , tnkn
) :

0 = tn0 < tn1 < · · · < tnkn
= T} be an increasing sequence of subdivisions of [0, T ]

with mesh going to 0 , then for each n,

Nn
t :=

kn∑
i=1

Mti−1
(Mti∧t −Mti−1∧t)



18 2. CONSTRUCTION OF DIFFUSION PROCESSES II

is a martingale, and Nn
t convergent uniformly on compacts, with probability one to

some square integrable martingale Nt.

Proof. It is easy to verify that Nn
t is a martingale. Let us fix n ⩽ m and

evaluate the product E (Nn
TN

m
T ). This product is equal to

kn∑
i=1

km∑
j=1

E
[
Mtni−1

(
Mtni

−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
.

In this double sum, the only terms that may be nonzero are those corresponding
to indices i and j such that the interval

(
tmj−1, t

m
j

]
is contained in

(
tni−1, t

n
i

]
. Indeed,

suppose that tni ⩽ tmj−1 (the symmetric case tmj ⩽ tni−1 is treated in an analogous
way).

Then, conditioning on the σ-field Ftmj−1
, we have

E
[
Mtni−1

(
Mtni

−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
=E

[
Mtni−1

(
Mtni

−Mtni−1

)
Mtmj−1

E
[
Mtmj

−Mtmj−1
| Ftmj−1

]]
= 0.

For every j = 1, . . . , km, write in,m(j) for the unique index i such that
(
tmj−1, t

m
j

]
⊂(

tni−1, t
n
i

]
. It follows from the previous considerations that

E [Nn
TN

m
T ] =

∑
1⩽j⩽km,i=in,m(j)

E
[
Mtni−1

(
Mtni

−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
.

In each term E
[
Mtni−1

(
Mtni

−Mtni−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
, we can now decom-

pose

Mtni
−Mtni−1

=
∑

k:in,m(k)=i

(
Mtmk

−Mtmk−1

)
and we observe that, if k is such that in,m(k) = i but k ̸= j,

E
[
Mtni−1

(
Mtmk

−Mtmk−1

)
Mtmj−1

(
Mtmj

−Mtmj−1

)]
= 0

(condition on Ftmk−1
if k > j and on Ftmj−1

if k < j ). The only case that remains

is k = j, and we have thus obtained

E [Nn
TN

m
T ] =

∑
1⩽j⩽km,i=in,m(j)

E

[
Mtni−1

Mtmj−1

(
Mtmj

−Mtmj−1

)2]
.

As a special case of this relation, we have

E
[
(Nm

T )
2
]
=

∑
1⩽j⩽km

E

[
M2

tmj−1

(
Mtmj

−Mtmj−1

)2]
.



2.2. BASIC STOCHASTIC ANALYSIS 19

Furthermore,

E
[
(Nn

T )
2
]
=
∑

1⩽i⩽n

E

[
M2

tni−1

(
Mtni

−Mtni−1

)2]

=
∑

1⩽i⩽n

E

[
M2

tni−1
E

[(
Mtni

−Mtni−1

)2
| Fn

ini−1

]]

=
∑

1⩽i⩽kn

E

M2
tni−1

∑
j:in,m(j)=i

E

[(
Mtmj

−Mm
tmj−1

)2
| Ftni−1

]
=

∑
1⩽j⩽km,i=in,m(j)

E

[
M2

tni−1

(
Mtmj

−Mtmj−1

)2]
,

If we combine the last three displays, we get

E
[
(Nn

T −Nm
T )

2
]
= E

 ∑
1⩽j⩽km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)2 (
Mtmj

−Mtmj−1

)2 .

Using the Cauchy-Schwarz inequality, we then have

E
[
(Nn

T −Nm
T )

2
]
⩽E

[
sup

1⩽j⩽km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)4]1/2

×E


 ∑

1⩽j⩽km

(
Mtmj

−Mm
tmj−1

)22

1/2

.

By the continuity of sample paths (together with the fact that the mesh of our
subdivisions tends to 0 ) and dominated convergence, we have

lim
n,m→∞,n⩽m

E

[
sup

1⩽j⩽km,i=in,m(j)

(
Mtni−1

−Mtmj−1

)4]
= 0.

To complete the proof of the lemma, it is then enough to prove the existence
of a finite constant C such that, for every m,

E


 ∑

1⩽j⩽km

(
Mtmj

−Mtmj−1

)22
 ⩽ C.
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Let A be a constant such that |Mt| ⩽ A for every t ⩾ 0. Expanding the square
and using Proposition 3.14 twice, we have

E


 ∑

1⩽j⩽km

(
Mtmj

−Mtmj−1

)22


= E

 ∑
1⩽j⩽km

(
Mtmj

−Mtmj−1

)4+ 2E

 ∑
1⩽j<k⩽km

(
Mtmj

−Mtmj−1

)2 (
Mtmk

−Mtmk−1

)2
⩽ 4A2E

 ∑
1⩽j⩽km

(
Mtmj

−Mtmj−1

)2
+ 2

km−1∑
j=1

E

(Mtmj
−Mtmj−1

)2
E

 km∑
k=j+1

(
Mtmk

−Mtmk−1

)2
| Ftmj


= 4A2E

 ∑
1⩽j⩽km

(
Mtmj

−Mtmj−1

)2
+ 2

km−1∑
j=1

E

[(
Mtmj

−Mtmj−1

)2
E

[(
MT −Mtmj

)2
| Ftmj

]]
□

Let Mt be a square integrable martingale, 0 = t0 ⩽ t1 ⩽ · · · ⩽ tn = T and
Hs(ω) =

∑n−1
i=0 Hti(ω)1(ti,ti+1](s), where Fi is bounded and Fti-measurable. Define

ˆ t

0

HsdMs :=

n−1∑
i=0

Hti(Mt∧ti+1
−Mt∧ti).

Then

Lemma 2.17. t 7→
´ t
0
HsdMs is a L2-martingale. Moreover, we have the following

Itô isometry:

(2.2) E

(ˆ t

0

HsdMs

)2

= E

ˆ t

0

H2
sd⟨M⟩s.

Proof.

E

(ˆ 1

0

HsdMs

)2

=E
∑
i

H2
ti(Mti+1

−Mti)
2 + 2E

∑
i<j

HtiHtj (Mti+1
−Mti)(Mtj+1

−Mtj )

= : I1 + I2.

I1 =
∑
i

EE
(
H2

ti(Mti+1
−Mti)

2
∣∣Fti

)
=
∑
i

E
[
H2

tiE
(
(Mti+1

−Mti)
2
∣∣Fti

)]
=
∑
i

EH2
ti(⟨M⟩ti+1 − ⟨M⟩ti) = E

ˆ 1

0

H2
sd⟨M⟩s,
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I2 = 2
∑
i<j

E
[
HtiHtj (Mti+1 −Mti)E

(
(Mtj+1 −Mtj )

∣∣Ftj

)]
= 0.

Therefore,

E

(ˆ 1

0

HsdMs

)2

= E

ˆ 1

0

H2
sd⟨M⟩s.

t 7→
´ t
0
HsdWs =

∑n−1
i=0 Hti(Wt∧ti+1 −Wt∧ti) is a continuous martingale. □

We then can use this to extend the above construction to more general Hs

satisfying
´ t
0
H2

sd⟨M⟩s < ∞ by taking limits in L2. For general continuous local
martingale, we can employ standard localization argument to define the above

integral. For Xt = Mt +At, a semimartingale,
´ t
0
HsdXs is given by

ˆ t

0

HsdXs =

ˆ t

0

HsdMs +

ˆ t

0

HsdAs,

where the first integral on the right is a stochastic integral and the second integral
on the right is a Riemann-Stieltjes integral.

Proposition 2.18. 〈ˆ ·

0

HsdMs

〉
t

=

ˆ t

0

H2
sd⟨M⟩s.

Let Nt =
´ t
0
HsdMs. Then

ˆ t

0

KsdNs =

ˆ t

0

KsHsdMs.

2.3. Itô’s formula and its applications

We list some important results in stochastic calculus.

Theorem 2.19 (Itô’s formula). If each Xi
t (for each i ∈ 1, · · · d}) is a contin-

uous semimartingale and f ∈ C2(Rd), then

(2.3)

f (Xt)− f (X0)

=

ˆ t

0

d∑
i=1

∂if (Xs) dX
i
s +

1

2

ˆ t

0

d∑
i,j=1

∂ijf (Xs) d
〈
Xi, Xj

〉
s

(see [Hua01, Theorem 13.5]).
It is often useful to use the language of Stratonovitch’s integration to study

stochastic differential equations because the Itô’s formula takes a much nicer form.
If Mt is an Ft-adapted real valued local martingale and if Ht is an Ft-adapted con-

tinuous semimartingale satisfying P
(´ T

0
Hsd⟨M⟩s < ∞

)
= 1, then by definition

the Stratonovitch integral of Ht with respect to Mt is defined as
ˆ T

0

Ht ◦ dMt =

ˆ T

0

HtdMt +
1

2
⟨H,M⟩T .

By using Stratonovitch integral instead of Itô’s, the Itô formula reduces to the
classical change of variable formula.
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Theorem 2.20. Let Mt be a d–dimensional continuous semimartingale. Let
now f be a C2 function. We have

f(Mt) = f(M0) +

ˆ t

0

∂if(Xs) ◦ dM i
s, t ⩾ 0.

Theorem 2.21 (Burkholder-Davis-Gundy inequalities). If Mt is a continuous
martingale with M0 = 0, and τ is a stopping time, then

(2.4) E sup
t∈[0,τ ]

|Mt|p ≍p E⟨M⟩p/2τ , p ∈ (0,∞)

Proof. Step 1: for any p ⩾ 2, by Itô’s formula

|Mτ |p = p

ˆ τ

0

sgn(Mt)|Mt|p−2MtdMt +
p(p− 1)

2

ˆ T

0

|Mt|p−2d⟨M⟩t;

By Doob’s inequality and Hölder’s inequality,

E(M∗
τ )

p ≲pE|Mτ |p ≲p E((M∗
τ )

p−2⟨M⟩τ )

⩽(E(M∗
τ )

p)1−
2
p (E⟨M⟩

p
2
τ )

2
p ;

Step 2: using Lenglart’s domination inequality, we can get the proof for the case
p ∈ (0, 2).

We proceed now to the proof of the left hand side inequality. We have,

M2
t = ⟨M⟩t + 2

ˆ t

0

MsdMs.

Therefore, we get

E
(
⟨M⟩

p
2

T

)
≲ E(M∗

T )
p +E

(
sup

0≤t≤T

∣∣∣∣ˆ t

0

MsdMs

∣∣∣∣p/2
)
.

By using the previous argument, we now have

2
p
2E

(
sup

0≤t≤T

∣∣∣∣ˆ t

0

MsdMs

∣∣∣∣p/2
)

≤ CE

(ˆ T

0

M2
s d⟨M⟩s

)p/4


⩽CE
(
(M∗

T )
p/2⟨M⟩p/4T

)
⩽ C (E(M∗

T )
p)

1/2
(
E⟨M⟩p/2T

)1/2
⩽ε′E(M∗

T )
p + Cε′E⟨M⟩p/2T ⩽ ε.

As a conclusion, we obtained that d □

Proposition 2.22 (Lenglart). Let Xt be a positive adapted right-continuous process
and At be an increasing process. Assume that for every bounded stopping time τ ,
E(Xτ | F0) ⩽ E(Aτ | F0). Then, for every κ ∈ (0, 1),

E (X∗
T )

κ ⩽
2− κ

1− κ
E (Aκ

T ) .

We shall use this lemma to prove the following
Another approach to proving (2.4) is utilizing ”good-λ” inequality (cf. [RY13]).

Theorem 2.23 (Lévy’s theorem). If Xt is a d-dimensional (Ft)t⩾0-adapted
process, each of whose coordinates is a continuous local martingale, and ⟨Xi, Xj⟩t =
δijt, then Xt is a d-dimensional (Ft)t⩾0-Brownian motion.
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Proof. Let ξ ∈ Rd. Then ξ ·Xt is a continuous local martingale with quadratic
variation ⟨ξ · X⟩t = |ξ|2t. By Itô’s formula, exp(iξ · Xt +

1
2 |ξ|

2t) is a continuous
local martingale. This complex continuous local martingale is bounded on every
finite interval and is therefore a (true) martingale, in the sense that its real and
imaginary parts are both martingales. Hence, for every s < t,

E

[
exp

(
iξ ·Xt +

1

2
|ξ|2t

)∣∣∣∣ Fs

]
= exp

(
iξ ·Xs +

1

2
|ξ|2s

)
Thus,

E [ exp (iξ · (Xt −Xs))| Fs] = exp

(
1

2
|ξ|2(t− s)

)
.

This implies Xt −Xs is independent with Fs and Xt −Xs ∼ N (0, t− s).
Finally, X is adapted and has independent increments with respect to the

filtration (Ft)t⩾0 so that X is a s-dimensional (Ft)t⩾0-Brownian motion. □

Let Mt be a continuous local martingale with M0 = 0. Set E (M)t := exp(Mt−
⟨M⟩t/2).

Proposition 2.24. E (M)t is a continuous local martingale, and is the unique
solution to

dXt = XtdMt, X0 = 1.

Theorem 2.25 (Girsanov theorem). Let Xt and Mt be two continuous local
martingales under P with M0 = 0 P-a.s.. Assume that E (M)t is a martingale, we
define a new probability measure Q by setting the restriction of dQ/dP to Ft to be
E (M)t, then Xt − ⟨X,M⟩t is a martingale under Q and the quadratic variation of
Xt is the same under P and Q.

Proof. By localization, we can assume X is a martingale. Set Yt = Xt −
⟨X,M⟩t. We only need to verify that YtE (M)t is a martingale under P. By Itô’s
formula,

dYtE (M)t =E (M)tdXt − E (M)td⟨X,M⟩t + YtE (M)tdMt + d⟨X,E (M)⟩t
=E (M)tdXt + YtE (M)tdMt.

Therefore, YtE (M)t is a martingale, which implies

EQ(Yt;A) = EQ(Ys;A), ∀A ∈ Fs,

i.e.

EQ(Yt|Fs) = Ys.

□

Theorem 2.26 (Dambis-Dubins-Schwarz’s Theorem). Let M be a continuous
local martingale with respect to a filtration (Ft)t⩾0, such that M0 = 0 and ⟨M⟩∞ =
∞ almost surely. For all t ⩾ 0, let

Tt = inf{s ⩾ 0 : ⟨M⟩s > t} = ⟨M⟩−1
t

be the generalized inverse of the non-decreasing process ⟨M⟩ issued from 0. Then

(i) B = (MTt
)t⩾0 is a Brownian motion with respect to the filtration (FTt

)t⩾0.
(ii) (B⟨M⟩t)t⩾0 = (Mt)t⩾0.
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Since ⟨M⟩ can be flat on an interval, the map t 7→ Tt can be discontinuous.
But this does not contradict the continuity of t 7→ MTt . Indeed, the flatness lemma
states that

Lemma 2.27 (Flatness Lemma). M and ⟨M⟩ are constant on the same intervals
in the sense that almost surely, for all 0 ⩽ a < b,

∀t ∈ [a, b],Mt = Ma if and only if ⟨M⟩b = ⟨M⟩a.

Proof. Since M and ⟨M⟩ are continuous, it suffices to show that for all 0 ⩽
a ⩽ b, almost surely,

{∀t ∈ [a, b] : Mt = Ma} = {⟨M⟩b = ⟨M⟩a}.
The inclusion ⊂ comes from the approximation of the quadratic variation. Let

us prove the converse. To this end, we consider the continuous local martingale
(Nt)t⩾0 = (Mt −Mt∧a)t⩾0. We have

⟨N⟩ = ⟨M⟩ − 2⟨M,Ma⟩+ ⟨Ma⟩ = ⟨M⟩ − 2⟨M⟩a + ⟨M⟩a = ⟨M⟩ − ⟨M⟩a.
For all ϵ > 0, we set the stopping time Tϵ = inf{t ⩾ 0 : ⟨N⟩t > ϵ}. The

continuous semi-martingale NTϵ satisfies NTϵ
0 = 0 and ⟨NTϵ⟩∞ = ⟨N⟩Tϵ

⩽ ϵ. It
follows that NTϵ is a martingale bounded in L2, and for all t ⩾ 0,

E(N2
t∧Tϵ

) = E(⟨N⟩t∧Tϵ
) ⩽ ϵ.

Let us define the event A = {⟨M⟩b = ⟨M⟩a}. Then A ⊂ {Tϵ ⩾ b} and, for all
t ∈ [a, b],

E(1AN
2
t ) = E(1AN

2
t∧Tϵ

) ⩽ E(N2
t∧Tϵ

) ⩽ ϵ.

By sending ϵ to 0 we obtain E(1AN
2
t ) = 0 and thus Nt = 0 almost surely on

A. This ends the proof of the flatness lemma, which is of independent interest. □

Proof of Theorem 2.26. For all t ⩾ 0, the random variable Tt is a stopping
time with respect to (Fu)u⩾0, and s 7→ Ts is non-decreasing. It follows that for all
0 ⩽ s ⩽ t, FTs

⊂ FTt
, and thus (FTu

)u⩾0 is a filtration. Moreover, for all t ⩾ 0,
Tt is a stopping time for the filtration (FTu

)u⩾0. We have Tt < ∞ for all t ⩾ 0 on
the almost sure event {⟨M⟩∞ = ∞}. By construction, (Tt)t⩾0 is right continuous,
non-decreasing (and thus with left limits), and adapted with respect to (FTt)t⩾0.
Since M is continuous, B = (MTt

)t⩾0 is right continuous with left limits. Moreover,
for all t ⩾ 0,

Bt− = lim
s→t−

Bs = MTt−
.

By the flatness lemma, almost surely Bt− = Bt for all t ⩾ 0, hence B is
continuous.

Let us show that B is a Brownian motion for (FTt
)t⩾0. For all n ⩾ 0, MTn

is a continuous local martingale issued from the origin and ⟨MTn⟩∞ = ⟨M⟩Tn
= n

almost surely. It follows that for all n ⩾ 0, the processes

MTn and (MTn)2 − ⟨M⟩Tn

are uniformly integrable martingales. Now, for all 0 ⩽ s ⩽ t ⩽ n, and by the
Doob stopping theorem for uniformly integrable martingales, using Ts ⩽ Tt ⩽ Tn,

E(Bt|FTs
) = E(MTn

Tt
|FTs

) = MTn

Ts
= MTn∧Ts

= Bs
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and similarly, using additionally the property ⟨M⟩Tn

Tt
= ⟨M⟩Tn∧Tt

= ⟨M⟩Tt
= t,

E(B2
t − t|FTs

) = E((MTn

Tt
)2 − ⟨MTn⟩Tt

|FTs
) = (MTn

Ts
)2 − ⟨MTn⟩Ts

= B2
s − s.

Thus, B and (B2
t −t)t⩾0 are martingales with respect to the filtration (FTt

)t⩾0.
It follows now from the Lévy characterization that B is a Brownian motion for
(FTt)t⩾0.

Let us show that M = B⟨M⟩. By definition of B, almost surely, for all t ⩾ 0,

B⟨M⟩t = MT⟨M⟩t
.

Now, T⟨M⟩t ⩽ t ⩽ T⟨M⟩t , and since ⟨M⟩ takes the same value at T⟨M⟩t and
T⟨M⟩t , we get t = T⟨M⟩t , and the flatness lemma gives Mt = MT⟨M⟩t

for all t ⩾ 0
almost surely. In other words, using the definition of B, this means that almost
surely, for all t ⩾ 0,

Mt = MT⟨M⟩t
= B⟨M⟩t .

□

2.4. Stochastic Differential Equations

One of the main object in this note is the following SDE:

(2.5) dXi
t = σi

k(Xt)dW
k
t + bi(Xt)dt, X0 = ξ ∈ F0.

Given (Ω,F ,P, (Ft)t⩾0,Wt), we say (2.5) has a pathwise solution if there exists a
continuous Ft-adapted process Xt satisfying (2.5). We say that we have pathwise
uniqueness for (2.5) if whenever Xt and Yt are two solutions, then there exists a
set N such that P(N ) = 0 and for all ω /∈ N , we have (Xt(ω))t⩾0 = (Yt(ω))t⩾0.

2.4.1. Lipschitz conditions.

Theorem 2.28 (Itô). Suppose σ and b are Lipschitz. Then there exists a unique
pathwise solution to the SDE (2.5) for any X0 ∈ L2(Ω,F0,P).

Proof. Let B denote the set of all continuous processes ξ that are adapted to
the filtration Ft and satisfy

∥ξ∥B :=

(
E sup

t∈[0,T ]

|ξt|2
)1/2

< ∞.

Here T is a positive number which will be determined later. It is not hard to verify
that B is a Banach space. Define a map A on B by

(A (ξ))t := X0 +

ˆ t

0

σ(ξs) · dWs +

ˆ t

0

b(ξs)ds, t ∈ [0, T ].
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(Verify that A(ξ) ∈ B). By (2.4) (or Doob’s inequality) and Lipschitz condition on
the coefficients,

∥A (ξ)− A (η)∥2B = E sup
t∈[0,T ]

|A (ξ)t − A (η)t|2

⩽2E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

(σ(ξs)− σ(ηs))dWs

∣∣∣∣2 + 2E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

(b(ξs)− b(ηs))ds

∣∣∣∣2
(2.4)

⩽ CE

ˆ T

0

|σ(ξs)− σ(ηs)|2ds+ CE

(ˆ T

0

|b(ξs)− b(ηs)|ds

)2

⩽C(T + T 2)E sup
t∈[0,T ]

|ξt − ηt|2 = C1(T + T 2)∥ξ − η∥2B .

Choosing T > 0 sufficiently small such that C1(T + T 2) ⩽ 1/2, then A is a
Contraction mapping on B. Banach fixed-point theorem yields that A has a unique
fixed point, which is the unique pathwise solution to (2.5). We can extend the same
result to arbitrarily time intervals. □

2.4.2. Definitions of solutions.

(1) strong solution exists to (2.5): if given the Brownian motion Wt there
exists a process Xt satisfying (2.5) such that Xt is adapted to the filtration
generated by Wt.

(2) weak solution exists to (2.5): if there exists (Ω,F ,P, (Ft)t⩾0;Xt,Wt)
such that Wt is a (Ft)t⩾0-Brownian motion and the equation (2.5) holds.

(3) weak uniqueness: if whenever (Ω,F ,P, (Ft)t⩾0;Xt,Wt) and
(Θ,G,Q, (G)t⩾0;Yt, Bt) are two weak solutions, then the laws of the pro-
cesses X and Y are equal; Joint uniqueness in law means the joint law
of (X,W ) and (Y,B) are equal.

A fundamental result is

Theorem 2.29 (Yamada-Watanabe-Engelbert [Eng91]). The following two
conditions are equivalent.

(i) For every initial distribution, there exists a weak strong solution to (2.5) and
the solution to (2.5) is pathwise unique.

(ii) For every initial distribution, there exists a strong strong solution to (2.5) and
the solution to (2.5) is jointly unique in law.

If one (and therefore both) of these conditions is satisfied then every solution to
(2.5) is a strong solution.

Proposition 2.30.

2.4.3. SDEs with Hölder drifts. For strong well-posedness, if the diffusion
coefficient σ is non-degenerate, then the condition on b can be weakened.

Let δ ∈ (0, 1). Define

Sdδ =
{
A ∈ S(d) : δId ⩽ A ⩽ δ−1Id

}
Theorem 2.31 (Krylov [Kry21b]). Suppose that a ∈ Sdδ and ∇σ, b ∈ Ld(Rd),

then equation (2.5) admits a unique strong solution.

Of course, we will not to prove such a strong result here, but a simper one
below.
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Theorem 2.32 (Flandoli-Gubinelli-Priola [FGP10]). Equation (2.5) admits
a unique strong solution, provided that a ∈ Sdδ , σ is Lipschitz, and b ∈ Cα(Rd)
(∀α > 0).

Let

Lu = aij∂iju+ bi∂iu.

We will consider

(2.6) λu− Lu = f, λ > 0.

We need the following apriori estimate.

Lemma 2.33. Suppose a ∈ Sdδ and a, b ∈ Cα. Then for any λ > 0 and u ∈ C2,α,
it holds that

(2.7) λ∥u∥α + ∥u∥2+α ⩽ C∥λu− Lu∥α,

where C only depends on d, δ, α, and ∥a∥α and ∥b∥α.

Proof. The proof for the above lemma for L = ∆ can be founded in Appendix
7.3.

For general elliptic operators, let ζ ∈ C∞
c (B2) such that ζ ⩾ 0, ζ ≡ 1 in B1.

Set ζzε = ζ((x− z)/ε), and f = λu− Lu. Then

λ(uζzε )− aij(z)∂ij(uζ
z
ε )

=(aij − aij(z))∂ij(uζ
z
ε )− 2aij∂iu∂jζ

z
ε − aij∂ijζ

z
εu

+ bi∂iu ζ
z
ε + fζzε ,

In virtue of Lemma 7.9, we have

λ[uζzε ]α + [∇2(uζzε )]α ⩽ Cε[∇2(uζzε )]α + C[f ]α + Cε−α∥f∥0
+ C∥∇2u∥0 + Cε−1[∇u]α + Cε−1−α∥∇u∥0 + Cε−2[u]α + Cε−2−ε∥u∥0.

Here we use the fact that

[fg]α ⩽ ∥f∥0[g]α + [f ]α∥g∥0.

Choosing ε0 > 0 sufficiently small so that Cε0 ⩽ 1/2, we get

λ[u]α + [∇2u]α ⩽ sup
z∈Rd

(
λ[uζzε0 ]α + [∇2(uζzε0)]α

)
⩽ Cε0(∥f∥α + ∥u∥2).

Noting that ∥u∥2 ⩽ δ[∇2u]α + Cδ∥u∥0, δ > 0, we obtain that

λ[u]α + [∇2u]α ⩽ C(∥f∥α + ∥u∥0).

Since λ∥u∥0 ⩽ ∥f∥0, by interpolation, one sees that

λ∥u∥α + ∥u∥2+α ⩽ C(1 + λ−1)∥f∥α.

So we obtain our desired assertion. □

Theorem 2.34. Suppose a ∈ Sdδ and a, b ∈ Cα. Then for any λ > 0 and
f ∈ Cα, equation (2.6) admits a unique solution in C2,α. Moreover,

(2.8) λ∥u∥α + ∥u∥2+α ⩽ C(1 + λ−1)∥f∥α,

where C only depends on d, δ, α, and ∥a∥α and ∥b∥α.

Sketch of the proof for Theorem 2.34:
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(i) If L = ∆ and f ∈ S (Rd), then for each λ > 0, one can use Fourier transfor-
mation to solve (2.6), i.e. u = F−1

[
F(f) · (λ+ 4π2| · |2)

]
∈ ∩s>0H

s ⊆ C∞
b .

Moreover, (2.8) can also be proved by Fourier analysis method (see Appendix
7.3);

(ii) For any L satisfying the conditions in Theorem 2.34, and any u ∈ C2,α, by
Lemma 2.33, (2.8) holds true for any λ > 0;

(iii) Let χ be a cutoff function and ζ be a mollifier. For any f ∈ Cα, we set
fε = χε(f ∗ ζε). Here χε(x) = χ(x/ε) and ζε(x) = ε−dζ(x/ε). Using (i), for
each ε > 0, there is a smooth soluiton, say uε, to (2.6) with L and f replaced
by ∆ and fε. The limit of (uε), u, satisfies λu−∆u = f , and u also satisfies
(2.8);

(iv) In the light of (2.8) and the method of continuity (see Lemma 2.35 below),
one can obtain the solvability of (2.6) in C2,α.

Lemma 2.35 (Method of continuity). Let B be a Banach space, V a normed vector
space, and Tt a norm continuous family of bounded linear operators from B into
V . Assume that there exists a positive constant C such that for every t ∈ [0, 1] and
every x ∈ B,

∥x∥B ⩽ C∥Ttx∥V .
Then T0 is a surjective if and only if T1 is surjective as well.

Proof of Theorem 2.32. Since σ and b are bounded continuous, weak solu-
tion exists to (2.5) (see [Hua01]). Thanks to Theorem 2.29, we only need to prove
the pathwise uniqueness.

Let λ ≫ 1 Consider the following equation

λuλ − Luλ = b.

By Lemma 2.33 and interpolation theorem

∥∇u∥0 ⩽ ∥u∥
1
2
0 ∥∇2u∥

1
2
0 ⩽ Cλ− 1

2 ∥b∥α.

Choosing λ sufficiently large so that Cλ− 1
2 < 1/2. Set ϕ(x) = x + u(x), then

ϕ : Rd → Rd is a C1,α-homeomorphism.
Assume that X and X ′ are two solutions to (2.5). Set Yt = ϕ(Xt) and Y ′

t =
ϕ(X ′

t). Then by Itô’s formula,

dY i
t = (δij+∂ju

i)(Xt)σjk(Xt)dW
k
t +
[
ajk(Xt)∂jku

i(Xt) + (δij + ∂ju
i)(Xt)b

j(Xt)
]
dt

i.e.

dYt =[(I +∇u)σ] ◦ ϕ−1(Yt)dWt +
[
a : ∇2u+ (I +∇u)b

]
◦ ϕ−1(Yt)dt

= [(I +∇u)σ] ◦ ϕ−1︸ ︷︷ ︸
=:σ̃

(Yt)dWt + λu ◦ ϕ−1︸ ︷︷ ︸
=:̃b

(Yt)dt.

Similarly, dY ′
t = σ̃(Y ′

t )dWt + b̃(Y ′
t )dt. Since σ̃ and b̃ are both C1,α functions, as in

the proof for Theorem 2.28, we have

E|Yt − Y ′
t |2 ⩽ C

ˆ t

0

E|Ys − Y ′
s |2ds.

This yields Yt = Y ′
t , due to Gronwall’s inequality. Since ϕ is one-to-one, Xt =

X ′
t. □
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2.4.4. Stochastic Flow. Consider (2.5) .

Theorem 2.36. If σ and b are Lipschitz, then there exists a version of Xt(x)
that is continuous in (t, x) a.s.

Proof.

Xt(x)−Xt(y) = x− y +

ˆ t

0

[σ(Xs(x))− σ(Xs(y))] dWs +

ˆ t

0

[b(Xs(x))− b(Xs(y))] ds

By the Burkholder-Davis-Gundy inequalities, for any t ∈ [0, 1] and p ⩾ 2,

E sup
s∈[0,t]

∣∣∣∣ˆ s

0

[σ(Xr(x))− σ(Xr(y))] dWr

∣∣∣∣p
⩽CE

(ˆ t

0

|Xs(x)−Xs(y)|2ds
)p/2

⩽CE

ˆ t

0

|Xs(x)−Xs(y)|pds.

Set g(t) = E sups∈[0,t] |Xs(x)−Xs(y)|p. Then for any T > 0, we have

g(t) ⩽ C|x− y|p + C

ˆ t

0

g(s)ds, t ∈ [0, T ],

where C only depends on d, p and T . Gronwall’s inequality yields

E sup
t∈[0,1]

|Xt(x)−Xt(y)|p ⩽ C|x− y|p, ∀p ⩾ 2.

Further, one can verify that

E |Xt(x)−Xs(y)|p ⩽ C
(
|x− y|+ |t− s| 12

)p
, x, y ∈ Rd, t, s ∈ [0, T ], p ⩾ 2.

This together with Kolmogorov’s continuity theorem implies that there is a contin-
uous version of (t, x) 7→ Xt(x) such that

∥X(ω)∥Cα([0,1];Ċβ(BR)) ⩽ K(ω)

with α ∈ (0, 1/2) and β ∈ (0, 1), and K ∈ Lp for all p ⩾ 1. □

Remark 2.37. The above result also holds if σ and b are ω-dependent and ∥σ∥C1+
∥b∥C1 ⩽ L a.s., for some constant L.

The collection of processes Xt(x) is called a flow. If σ and b are smoother
functions, then Xt(x) will be smoother in x. Taking derivative, and using the chain
rule, formally we have

∂jX
i
t(x) =δij +

ˆ t

0

∂lσ
i
k(Xs(x))∂jX

l
s(x)dW

k
s

+

ˆ t

0

∂lb
i(Xs(x))∂jX

l
s(x)ds.

Suppose that σ and b are in C1
b , we consider the SDE

(2.9) dJ i
j(t, x) = ∂lσ

i
k(Xt(x))J

l
j(t, x)dW

k
t + ∂lb

i(Xt(x))J
l
j(t, x)dt, J i

j(0, x) = δij .

Follow the proof of Theorem 2.36, we have
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Proposition 2.38. Assume σ, b ∈ C2
b . A strong solution to (2.9) exists and is

pathwise unique. The solution has moments of all orders. Moreover, J(t, x) has a
Hölder continuous version, and

E sup
t∈[0,T ]

|J(t, x)− J(t, y)|p ⩽ C|x− y|p, x, y ∈ Rd, p ⩾ 1.

Exercise 2.39. Prove Proposition 2.38.

We now prove the differentiability of Xt(x).

Theorem 2.40. Suppose σ, b ∈ Ck
b . Then x 7→ Xt(x) is Ck−1,α a.s., and

∇Xt(x) = J(t, x).

Proof. For simplicity, we take b = 0 and k = 2. Then

Xi
t(x) = xi +

ˆ t

0

σi
k(Xs(x))dW

k
s .

Set

Si
j(t, x, h) := Xi

t(x+ ejh), Y i
j (t, x, h) :=

Xi
t(x+ ejh)−Xi

t(x)

|h|
, h ̸= 0.

Then

Si
j(t, x, h) = xi + ejh+

ˆ t

0

σi
k(Sj(s, x, h))dW

k
s

and

Y i
j (t, x, h) = δij +

ˆ t

0

[ˆ 1

0

∂lσ
i
k(θSj(s, x, h) + (1− θ)Xs(x))dθ

]
︸ ︷︷ ︸

⩽∥∇σ∥0

Y l
j (s, x, h)dW

k
s .

Set
Z(t, x, h) = (X(t, x), S(t, x, h), Y (t, x, h)).

Then
Z(0, x, h) =

(
x, (xi + ejh), (δ

i
j)
)

and Z satisfies an SDE with Lipschitz continuous coefficients. Noting that

|Z(0, x, h)− Z(0, x′, h′)| ⩽ C(|x− x′|+ |h− h′|),
following the arguments in Theorem 2.36, we can obtain that

E sup
t∈[0,T ]

|Z(t, x, h)− Z(t, x′, h′)|p ⩽ C(|x− x′|p + |h− h′|p), p ≫ 1.

This implies that Z(t, x, h) admits a locally Hölder continuous version. Conse-
quently, for almost every ω ∈ Ω, the limit limh→0 Y (t, x, h)(ω) exists for each t ⩾ 0
and x ∈ Rd. Furthermore, it is straightforward to verify that this limit coincides
with J , as both satisfy the same equation. □

One can also show (see Ikeda and Watanabe [IW14]) that the map x 7→ Xt(x)
is one-to-one and onto Rd.



CHAPTER 3

Path properties of Itô Processes

3.1. Some Properties of Brownian Motion

Let d = 1.

Lemma 3.1. Let (Wt) be a 1-dimensional Brownian motion. For any 0 < δ ⩽
10−4, it holds that

(i)

(3.1) inf
|x|⩽1/3

Px

(
sup

t∈[0,δ]

|Wt| ⩽ 1

)
⩾ 5/6.

(ii)

(3.2) inf
|x|⩽1/3

Px(|Wδ| ⩽ 1/3) ⩾ 1/3

Proof. For (3.1), using Doob’s inequality, we have

P0

(
sup

t∈[0,δ]

|Wt| >
2

3

)
⩽

3

2
E0|Wδ| ⩽

3
√
δ

2
.

Thus,

P0

(
sup

t∈[0,δ]

|Wt| >
2

3

)
⩽

1

6
, δ < 10−2,

which yields

inf
|x|⩽1/3

Px

(
sup

t∈[0,δ]

|Wt| ⩽ 1

)
⩾ P0

(
sup

t∈[0,δ]

|Wt| ⩽
2

3

)
⩾

5

6
, δ < 10−2.

For (3.2), we have

inf
|x|⩽1/3

Px(|Wδ| ⩽ 1/3) ⩾ P0(0 ⩽ Wδ ⩽ 1/3) ⩾
1

3
, 0 < δ ⩽ 10−4.

□

Proposition 3.2. Let W be a 1-dimensional Brownian motion. For any ε > 0 and
T > 0, there is a constant c(ε, T ) > 0 such that

P0

(
sup

t∈[0,T ]

|Wt| ⩽ ε

)
⩾ c(ε, T ).

31
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Proof. By the scaling property of Brownian motion (ε−1Wt
d
= Wε−2t), we

only need to show

P0

(
sup

t∈[0,Tε−2]

|Wt| ⩽ 1

)
⩾ c(ε, T ) > 0.

Set δ = 10−4. (3.1) and (3.2) imply that

inf
|x|⩽1/3

Px

(
sup

t∈[0,δ]

|Wt| ⩽ 1, |Wδ| ⩽ 1/3

)
⩾

1

6
.

Letting k = [Tε−2δ−1] = [104Tε−2], we have

P0

(
sup

t∈[0,Tε−2]

|Wt| ⩽ 1

)

⩾P0

(
sup

t∈[iδ,(i+1)δ]

|Wt| ⩽ 1 & |Wiδ| ⩽ 1/3, i = 0, 1, · · · k

)
⩾6−k =: c(ε, T ) > 0.

□

Proposition 3.3. Let W be a 1-dimensional Brownian motion. Then for any
λ, t > 0

P

(
sup

s∈[0,t]

|Ws| > λ

)
⩽ 2e−

λ2

2t

Proof. Let Xt = ea|Wt| with a > 0. Since x 7→ ea|x| is a convex function, Xt

is a submartingale. By Doob’s inequality, we have

P (W ∗
t > λ) = P

(
X∗

t > eaλ
)
⩽ e−aλEXt =

2e−aλ

√
2πt

ˆ ∞

0

eax−
x2

2t dx = 2e
a2t
2 −aλ.

Taking a = λ/t, we obtain

P (W ∗
t > λ) ⩽ 2e−

λ2

2t .

□

Corollary 3.4 (Exponential martingale inequality). Let Mt be a continuous mar-
tingale with M0 = 0, and τ be a bounded stopping time. Then

P

(
sup
t⩽τ

|Mt| > λ & ⟨M⟩τ ⩽ µ

)
⩽ 2e−

λ2

2µ .

Proof. By Dambis-Dubins-Schwarz Theorem, Mt is a time change of a Brow-
nian motion Wt. So the desired probability is bounded by

P

(
sup
t⩽T

|Wt| > λ & ⟨W ⟩T < µ

)
,

where T is a stopping time. Since ⟨W ⟩T = T , the probability above is in turn
bounded by

P

(
sup
t⩽µ

|Wt| > λ

)
⩽ 2e−

λ2

2µ ,

due to Proposition 3.3. □
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The next result, which is known as the law of iterated logarithm shows in
particular that Brownian paths are not 1

2 -Hölder continuous.

Theorem 3.5 (law of iterated logarithm). Let (Wt)t≥0 be a Brownian motion.
For s ≥ 0,

P

lim inf
t→0

Wt+s −Ws√
2t log log 1

t

= −1, lim sup
t→0

Wt+s −Ws√
2t log log 1

t

= 1

 = 1.

Proof. Thanks to the symmetry and invariance by translation of the Brown-
ian motion, it suffices to show that:

P

lim sup
t→0

Wt√
2t log log 1

t

= 1

 = 1.

Let us first prove that

P

lim sup
t→0

Wt√
2t log log 1

t

⩽ 1

 = 1.

Let us denote h(t) =
√

2t log log 1
t . Let α, β > 0, from Doob’s maximal inequality

applied to the martingale
(
eαWt−α2

2 t
)
t≥0

, we have for t ≥ 0:

P

(
sup

0⩽s⩽t

(
Ws −

α

2
s
)
> β

)
= P

(
sup

0⩽s⩽t
eαWs−α2

2 s > eαβ
)

⩽ e−αβ .

Let now θ, δ ∈ (0, 1). Using the previous inequality for every n ∈ N with t = θn, α =
(1+δ)h(θn)

θn , β = 1
2h(θ

n), yields when n → +∞,

P

(
sup

0⩽s⩽θn

(
Ws −

(1 + δ)h(θn)

2θn
s

)
>

1

2
h(θn)

)
= O

(
1

n1+δ

)
.

Therefore from Borel-Cantelli lemma, for almost every ω ∈ Ω, we may find N(ω) ∈
N such that for n ≥ N(ω),

sup
0⩽s⩽θn

(
Ws(ω)−

(1 + δ)h(θn)

2θn
s

)
⩽

1

2
h(θn).

But,

sup
0⩽s⩽θn

(
Ws(ω)−

(1 + δ)h(θn)

2θn
s

)
⩽

1

2
h(θn)

implies that for θn+1 ⩽ t ⩽ θn,

Wt(ω) ⩽ sup
0⩽s⩽θn

Ws(ω) ⩽
1

2
(2 + δ)h(θn) ⩽

(2 + δ)h(t)

2
√
θ

.

We conclude:

P

lim sup
t→0

Wt√
2t log log 1

t

⩽
2 + δ

2
√
θ

 = 1.
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Letting now θ → 1 and δ → 0 yields

P

lim sup
t→0

Wt√
2t log log 1

t

⩽ 1

 = 1.

Let us now prove that

P

lim sup
t→0

Wt√
2t log log 1

t

≥ 1

 = 1.

Let θ ∈ (0, 1). For n ∈ N, we denote

An =
{
ω,Wθn(ω)−Wθn+1(ω) ≥ (1−

√
θ)h(θn)

}
.

Let us prove that
∑

P(An) = +∞. The basic inequalityˆ +∞

a

e−
u2

2 du ≥ a

1 + a2
e−

a2

2 ,

implies

P(An) =
1√
2π

ˆ +∞

an

e−
u2

2 du ≥ an
1 + a2n

e−
a2
n
2 ,

with

an =
(1−

√
θ)h(θn)

θn/2
√
1− θ

.

When n → +∞,

an
1 + a2n

e−
a2
n
2 = O

(
1

n
1+θ−2

√
θ

1−θ

)
,

therefore, ∑
P(An) = +∞.

As a consequence of the independence of the Brownian increments and of Borel-
Cantelli lemma, the event

Wθn −Wθn+1 ≥ (1−
√
θ)h(θn)

will occur almost surely for infinitely many n’s. But, thanks to the first part of the
proof, for almost every ω, we may find N(ω) such that for n ≥ N(ω),

Wθn+1 > −2h(θn+1) ≥ −2
√
θh(θn).

Thus, almost surely, the event Wθn > h(θn)(1 − 3
√
θ) will occur for infinitely

many n’s. This implies

P

lim sup
t→0

Wt√
2t log log 1

t

≥ 1− 3
√
θ

 = 1.

We finally get

P

lim sup
t→0

Wt√
2t log log 1

t

≥ 1

 = 1.

by letting θ → 0. □
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As a straightforward consequence, we may observe that the time inversion
invariance property of Brownian motion implies:

Corollary 3.6. Let (Wt)t≥0 be a standard Brownian motion.

P

(
lim inf
t→+∞

Wt√
2t log log t

= −1, lim sup
t→+∞

Wt√
2t log log t

= 1

)
= 1.

3.2. Support theorem

Let

σ : R+ × Ω → Rd×d, b : R+ × Ω → Rd and at =
1

2
σtσ

T
t .

Set

(3.3) xt =

ˆ t

0

σs · dWs +

ˆ t

0

bsds.

For simplicity, we always assume that a ∈ Sdδ .
The following result is a simplify version of Stroock-Varadhan’s support theo-

rem, which is taken from [Bas98].

Theorem 3.7 (Support theorem). Suppose σ, σ−1 and b are bounded, xt is
given by (3.3). Suppose φ : [0, 1] → Rd is continuous with φ(0) = 0. Then for each
ε > 0, there exists a constant c > 0 depending only on ε, the modulus of continuity
of φ, and the bounds on b, σ and σ−1 such that

(3.4) P

(
sup

t∈[0,1]

|xt − φ(t)| ⩽ ε

)
⩾ c.

This can be interpreted as saying that the graph of xt remains within an ε-tube
around φ with positive probability.

To prove Theorem 3.2, we need some auxiliary lemmas.

Lemma 3.8. Suppose X0 = 0, Xt = Mt + At is a continuous semimartingale
with dAt/dt and d⟨M⟩t/dt bounded above by N1 and d⟨M⟩t/dt bounded below by
N2 > 0. If ε > 0 and T > 0, then

P

(
sup

t∈[0,T ]

|Xt| < ε

)
⩾ c(ε, T,N1, N2) > 0.

Proof. Let τt = ⟨M⟩−1
t := inf{s > 0 : ⟨M⟩s > t}. In virtue of Dambis-

Dubins-Schwarz Theorem, Bt := Mτt is a Brownian motion. By our assumptions

on ⟨M⟩, τt ≍ t, and Yt := Xτt = Bt +
´ t
0
bsds with |bs| ⩽ C(N1, N2). Our assertion

will follow if we can show

P

(
sup

t∈[0,T ]

|Yt| ⩽ ε

)
⩾ c > 0.

We now use Girsanov’s theorem. Define a probability measure Q by

dQ/dP = ET (−b) := exp

(
−
ˆ T

0

bsdBs −
1

2

ˆ T

0

|bs|2ds

)
on FT .
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By Girsanov’s theorem, under Q, Yt is a Brownian motion. Therefore,

Q (A) ⩾ c > 0, A =

{
sup

t∈[0,T ]

|Yt| ⩽ ε

}
.

By Hölder’s inequality,

c ⩽ Q(A) ⩽ EP(ET (−b)1A) ⩽ [EPE2
T (−b)]

1
2 [P(A)]

1
2 .

Since b is bounded, it is easy to verify that EPE2
T (−b) < ∞. This yields P(A) ⩾

c > 0. □

Now we are on the point to give

Proof of Theorem 3.2. Step 1: We first consider the case and φ = 0. Fix
z ∈ ∂Bε/4. Applying Itô’s formula with f(x) = |x− z|2 and setting yt = |xt − z|2,
then

yt = z2 +

ˆ t

0

(xs − z) · dxs + 2

ˆ t

0

trasds,
d

dt
⟨y⟩t = (xt − z)Tas(xt − z) ≍ yt.

Set τ := inf{s > 0 : |ys − y0| ⩾ (ε/8)2}, then cε2 ⩽ d⟨y⟩t/dt ⩽ Cε2, t ∈ [0, τ ]. If we
set zt equal to yt for t ⩽ τ and equal to some Brownian motion for t larger than
this stopping time, then Lemma 3.8 applies (for zt) and

P

(
sup

t∈[0,T ]

|xt| ⩽ ε

)
⩾P

(
sup

t∈[0,T ]

|yt − y0| ⩽ (ε/8)2

)

=P

(
sup

t∈[0,T ]

|zt − z0| ⩽ (ε/8)2

)
> 0.

Step 2: Without loss of generality, we may assume φ is differentiable with a
derivative bounded by a constant. Define a new probability measure Q by

dQ/dP = exp

(
−
ˆ T

0

φ′(s)σ−1
s dWs −

1

2

ˆ T

0

|φ′(s)σ−1
s |2ds

)
on FT .

Noting that 〈
−
ˆ ·

0

φ′(s)σ−1
s dWs, x

〉
t

=

ˆ t

0

φ′(s)ds = −φ(t).

So by the Girsanov theorem, under Q each component of xt is a semimartingale

and ni
t := xi

t −
´ t
0
bisds−φi(t) is a martingale for each i = 1, · · · , d, and ⟨ni, nj⟩t =´ t

0
σi
k(s)σ

j
k(s)ds. Therefore,

Bt :=

ˆ t

0

σ−1
s dns

is a continuous local martingale with ⟨Bi, Bj⟩t = δijt under Q. Thanks to Lévy’s
Theorem, Bt is a d-dimensional Brownian motion udner Q. Since

xt − φ(t) =

ˆ t

0

σsdBs +

ˆ t

0

bsds,
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by Step 1, Q(supt∈[0,T ] |xt − φ(t)| < ε) ⩾ c > 0. similarly to the last paragraph of
the proof for Lemma 3.8, we conclude

P

(
sup

t∈[0,T ]

|xt − φ(t)| < ε

)
⩾ c > 0.

□

3.3. ABP estimate and Generalized Itô’s formula

Below we will use the an analytic result due to Alexsandroff to study the Itô
process given by (3.3). Below, we employ an analytic result due to Alexandroff to
study the Itô process defined in (3.3). For simplicity, in this section, we assume
that b = 0. However, all results except Proposition 3.9 remain valid if b is uniformly
bounded. In that case, the constant C appearing in the estimates below may also
depend on the upper bound of |b|.

Proposition 3.9 (Alexsandroff). Let f be a nonnegative function on B1 such
that fd has finite integral over B1 and f = 0 outside B1. Then there exists a
nonpositive convex function u on B2 such that

(i) for any x ∈ B2,

(3.5) |u(x)| ⩽ C

(ˆ
B1

fddx

) 1
d

;

(ii) for any symmetric positive definite matrix a ∈ Rd×d, 0 < ε < 1 and x ∈ B1,

(3.6) aij∂ijuε(x) ⩾ d
d
√
det a fε(x),

where uε = u ∗ ζε, and ζε is a standard mollifier.

(3.5) is called Alexandroff–Bakelman–Pucci estimate in PDE literature.

In Section 7.4, we provide the proof for Proposition 3.9 based on the very
initial knowledge of the solvability of the following Monge–Ampère equations and
estimates of its solutions:

(3.7) det∇2u(x) = f in D,

which, actually, after a long development became also one of the cornerstones of
the theory of fully nonlinear elliptic partial differential equations.

Let

σ : R+ × Ω → Rd×d and at =
1

2
σtσ

T
t .

Set

(3.8) xt =

ˆ t

0

σs · dWs

and

τR(x) = inf {t > 0 : x+ xt /∈ BR} .
Proposition 3.9 implies
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Theorem 3.10 (Krylov [Kry09]). There is a constant C4 = C4(d) such that
for any R > 0, and nonnegative Borel f given on Rd, we have

(3.9) E

ˆ τR(x)

0

f (x+ xt)
d
√
det at dt ⩽ C4R∥f∥Ld(BR),

Proof. By scaling, we only need to consider the case R = 1. We can also
assume f ∈ C∞

c (B1).
By Itô’s formula,

uε(x+ xt∧τ1(x))− uε(x) =

ˆ t∧τ1(x)

0

aijs ∂ijuε(x+ xs)ds+mt∧τ1(x),

where m is a local martingale with m0 = 0. Selecting an appropriate stopping time
sequence, taking expectation, letting t → ∞ and using Proposition 3.9, we get

ˆ τ1(x)

0

d
√
det at fε(x+ xt)dt ⩽ d−1

ˆ τ1(x)

0

aijt ∂ijuε(x+ xt)dt

⩽
2

d
sup
x∈B1

|u(x)| ⩽ C4∥f∥Ld(B1).

Letting ε → 0, we obtain our assertion. □

We should point out that here we do not need to assume a ∈ Sdδ .

Remark 3.11. (i) (3.9) implies that if xt is a Itô’s process given by (3.3) with

σ non-degenerate, then the process t 7→
´ t
0
f(xs)ds is well-defined.

(ii) Suppose xt is a Itô process given by (3.3), a ∈ Sdδ and b satisfying |bt| ⩽ b(xt)
with some b ∈ Ld. In this case, Krylov [Kry21a] also proved (3.9) with
∥f∥Ld(D) replaced by ∥f∥Ld−ε(D) for some ε = ε(d, δ, ∥b∥) > 0 .

Theorem 3.10 as many results below admits a natural generalization with condi-
tional expectations. This generalization is obtained by tedious and not informative
repeating the proof with obvious changes. We mean the following which we call the
conditional version of Theorem 3.10 . Let γ be a finite stopping time, then

(3.10) E

[ˆ τR(x)

γ

f (x+ xt)
d
√

det at 1{γ⩽τR(x)} dt
∣∣∣Fγ

]
⩽ C4R∥f∥Ld(BR).

Lemma 3.12. Assume that a ∈ Sdδ . Then for any R > 0 and x ∈ BR, it holds that

EτR(x)
n ⩽ n!(C5R

2/δ)n,

where C5 only depends on d.

Proof. We can assume x = 0 and set τR = τR(0).

We claim that

(3.11) In(t) := E
(
[τR − t]n+|Ft

)
⩽ n!(C5R

2/δ)n.

Of course, (3.11) implies our desired result.
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When n = 1, (3.10) implies (3.11). If our assertion is true for a given n, then

In+1(t) =(n+ 1)!E

(ˆ
1t<t1<···<tn+1<τRdt1 · · · dtn+1

∣∣∣Ft

)
=(n+ 1)!

ˆ
dt1 · · · tn+1E

(
1t<t1<···<tn<τR1tn<tn+1<τR

∣∣∣Ft

)
=(n+ 1)!

ˆ
dt1 · · · tn+1E

[
1t<t1<···<tn<τRE

(
1tn<tn+1<τR

∣∣∣Ftn

) ∣∣∣Ft

]
=(n+ 1)E

[
n!

ˆ
1t<t1<···<tn<τRdt1 · · · tn

ˆ
E
(
1tn<tn+1<τR

∣∣∣Ftn

)
dtn+1

∣∣∣Ft

]
=(n+ 1)E

{
[τR − t]n+E

[ˆ τR

tn

1BR
(xtn+1

)dtn+1

∣∣Ftn

] ∣∣∣Ft

}
(3.10)

⩽ (n+ 1)C5δ
−1R2In(t)

(3.11)

⩽ (n+ 1)!(C5R
2/δ)n+1.

So we get what we desired. □

Theorem 3.13. Assume that a ∈ Sdδ . Then for any µ < δ/C5, R ∈ (0,∞) and
x ∈ BR,

(3.12) E exp

(
µτR(x)

δR2

)
⩽ (1− C5µ/δ)

−1.

In particular, for each λ > 0,

(3.13) P (τR(x) ⩾ λ) ⩽ 2 exp

(
− λ

2C5R2

)
.

Exercise 3.14. Let B be a one-dimensional BM. Let I = (−1, 1). Prove that

EτnI ⩽ Cnn!.

Using this to give another proof for (3.12).

Put
τR := τR(0).

Theorem 3.13 says that τR is smaller than a constant times R2 with high probability.
We want to show that in a sense the converse is also true: R2 is basically smaller
than a constant times τR with high probability.

Lemma 3.15. Assume that a ∈ Sdδ . There exists C6 depending only on d such that

(3.14) P(τR/R
2 ⩽ t) ⩽ C6δ

−1t, t, R > 0.

Proof. We only need to prove the case R = 1. Let ϕ be a C2 function that is
zero at 0, one on ∂B1, with ∂ijϕ bounded by a constant. By Itô’s formula

dϕ(xt) = ∇ϕ(xt) · σtdWt + aijt ∂ijϕ(xt)dt,

which yields that

ϕ(xt∧τ1) = E

ˆ t∧τ1

0

aijs ∂ijϕ(xs)ds ⩽ C6δ
−1t.

Since ϕ(xt∧τ1) ⩾ 1{τ1⩽t}, we get P(τ1 ⩽ t) ⩽ C6δ
−1t. □

Lemma 3.16. Assume that a ∈ Sdδ . There is a constant R = R(d, δ) such that

E exp(−τR) ⩽ 1/2.
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Proof. Fact: Let X be a non-negative random variable, and let F :
R+ → R be a decreasing function with F (∞) = 0. Then

EF (X) = −
ˆ ∞

0

F ′(t)P(X ⩽ t)dt.

Set X = τR and F (t) = e−t. In virtue of (3.14),

Ee−τR =

ˆ ∞

0

e−tP(τR ⩽ t)dt ⩽
ˆ ∞

0

e−t[1 ∧ (C3δ
−1R−2t)]dt ⩽ C7δ

−1R−2.

We set R =
√

2C7/δ. □

Exercise 3.17. For any R ∈ (0,∞)

(3.15) E exp
(
−R2τR/R

2
)
⩽ 1/2.

Theorem 3.18. Assume that a ∈ Sdδ . For any κ ∈ (0, 1), R ∈ (0,∞), x ∈ BκR,
and λ ⩾ 0,

(3.16) E exp (−λτR(x)) ⩽ 2e−
√
λ(1−κ)R/K ,

where K = R/ log 2. Consequently,

(3.17) P
(
τR(x) ⩽ tR2

)
⩽ 2 exp

(
−β(1− κ)2

t

)
,

where β = β(R) = K−2(R)/4 ∈ (0, 1).

Proof. Recall that τR(x) is the first exit time of x + xt from BR. Let τ ′R(x)
be the first exit time of x+ xt from B(1−κ)R(x).

We again assume that R = 1, x = 0 and κ = 0. Take N ∈ N, to be specified
later, and introduce τk, k = 1, · · · , N , as the first exit time of xt from Bk/N . We

also set γk be the first exit times of xt from BN−1(xτk−1) after τk−1, then

τk−1 ⩽ γk ⩽ τk

and

τ1 ⩾ (γ1 − τ0) + (γ2 − τ1) + · · ·+ (γN − τN−1).

By the conditional version of (3.15),

E
{
exp

[
−R2N2(γk − τk−1)

]
|Fτk−1

}
⩽ 1/2.

Therefore,
(3.18)

E
[
exp

(
−R2N2τ1

)]
⩽E

[
N∏

k=1

exp
(
−R2N2(γk − τk−1)

)]

⩽E

{
N−1∏
k=1

exp
(
−R2N2(γk − τk−1)

)
E
[
exp

(
−R2N2(γN − τN−1)

) ∣∣∣FτN−1

]}

⩽
1

2
E

[
N−1∏
k=1

exp
(
−R2N2(γk − τk−1)

)]
⩽ · · · ⩽ (1/2)N .
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Choosing N = [
√
λ/R], we get (3.16).

For (3.17). Thanks to (3.16),

P
(
τR(x) ⩽ tR2

)
= P

(
e−λτR(x) ⩾ e−λtR2

)
⩽ 2eλtR

2−
√
λ(1−κ)R/K ,

Choosing λ = ( 1−κ
2tRK )2, we obtain the desired estimate. □

The above estimates for first exit times have many important applications. Let

σΓ(x) = inf {t > 0 : x+ xt ∈ Γ}

be the first time the process x+ xt hits Γ.

Proposition 3.19. Assume that a ∈ Sdδ . For any κ ∈ (0, 1) there is a function
q(γ), γ ∈ (0, 1), depending only on d, δ, κ and naturally, also on γ, such that for any
R ∈ (0,∞), x ∈ BκR, and closed Γ ⊂ BR satisfying |Γ| ⩾ γ |BR|, it holds that

P (σΓ(x) ⩽ τR(x)) ⩾ q(γ).

Furthermore, q(γ) → 1 as γ ↑ 1.

Proof. By using scaling as before we reduce the general case to the one in
which R = 1. For any ε > 0, we have

P (σΓ(x) > τ1(x)) ⩽ P

(
τ1(x) =

ˆ τ1(x)

0

1B1\Γ (x+ xt) dt

)

⩽ P (τ1(x) ⩽ ε) + ε−1E

ˆ τ1(x)

0

IB1\Γ (x+ xt) dt.

In virtue of (3.17) and (3.9), for any x ∈ Bκ and any ε > 0, it holds that

P (σΓ(x) > τ1(x)) ⩽ 2e−
β(1−κ)2

ε + Cε−1 |B1\Γ|1/d

⩽ 2e−
1

Cε + Cε−1(1− γ)1/d,

where the constants C depend only on d, δ, κ. By denoting

q(γ) = 1− inf
ε>0

(
2e−

1
Cε + Cε−1(1− γ)1/d

)
,

we obtain our desired assertion. □

Note that in the above result, we have no assumption on the shape of the set
Γ.

Exercise 3.20. For any κ ∈ (0, 1), R ∈ (0,∞). For any x ∈ BR/2 and BκR(y) ⊆
BR, we have

P
(
σBκR(y)(x) < τR(x)

)
⩾ ζ(κ) > 0,

where ζ(κ) > 0 depends only on d, δ, and naturally, also on κ.

Hint: Using support theorem.

Theorem 3.21. Let p ⩾ d. Then there exists constants C depending only on
d, δ, such that for any λ > 0 and Borel nonnegative f given on Rd we have

(3.19) E

ˆ ∞

0

e−λtf (xt) dt ⩽ Cλ
d
2p−1 ∥f∥p .
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Proof. Let γ be a stopping time and γ′ be the first exit time of xt from
BR(xγ) after γ. By the conditional version of (3.16),

E
[
exp (−λ(γ′ − γ))

∣∣∣Fγ

]
⩽ 2e−

√
λR/K .

Choosing R = K/
√
λ, then

E
[
exp (−λ(γ′ − γ))

∣∣∣Fγ

]
⩽ 2/e < 1.

Let τ0 = 0 and τk be the first exit time of xt from BR(xτk−1) after τk−1. As the
proof for (3.18), we have

(3.20) Ee−λτk

= E

k∏
i=1

e−λ(τk−τk−1) ⩽ (2/e)k.

If (3.20) holds, then

E

ˆ ∞

0

e−λtf (xt) dt ⩽
∞∑
k=1

E

[
e−λτk−1

E

(ˆ τk

τk−1

f (xt) dt
∣∣∣Fτk−1

)]
(3.9)

⩽
∞∑
k=1

E
(
Cδ−1R∥f∥Ld(BR(x

τk−1 ))e
−λτk−1

)
⩽Cδ−1R2− d

p ∥f∥p
∞∑
k=0

Ee−λτk

⩽Cδ−1(K/
√
λ)2−

d
p ∥f∥p

∞∑
k=0

(2/e)k

⩽Cλ
d
2p−1∥f∥p.

□

Theorem 3.22 (Generalized Itô’s formula, see Krylov-[Kry09]). Let xt be a

Itô process given by (3.8). Suppose that a ∈ Sdδ , then for any u ∈ W 2,p
loc with p ⩾ d,

we have

(3.21)

u(x+ xt)− u(x)

=

ˆ t

0

∇u(x+ xs)σsdWs +

ˆ t

0

aijs ∂iju(x+ xs)ds

Proof. We only consider the case x = 0 and u ∈ W 2,d. Let η ∈ C∞
c (B1) with´

η = 1. Set ηε(x) = ε−dη(x/ε) and uε = u ∗ ηε. By Itô’s formula,

(3.22) uε(xt)− uε(x0) =

ˆ t

0

∇uε(xs)σsdWs +

ˆ t

0

aijs ∂ijuε(xs))ds.

Fact: by Sobolev embedding theorem, we have

(3.23) W 2,d ↪→ Cb; ∥∇u∥2d ⩽ C(∥∇2u∥Ld + ∥∇u∥Ld).
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Since u ∈ Cb, by letting ε → 0, one sees the left-hand side of (3.22) goes to
u(xt) − u(x0) as ε → 0. For the right-hand side of (3.22). By Doob’s maximal
inequality

E sup
t∈[0,T ]

∣∣∣∣ˆ t

0

∇uε(xs)σsdWs −
ˆ t

0

∇uε′(xs)σsdWs

∣∣∣∣2
⩽CE

ˆ T

0

|∇uε −∇uε′ |2(xs)ds ⩽ C∥∇uε −∇uε′∥2L2d

(3.23)

⩽ C∥uε − uε′∥W 2,d → 0, ε, ε′ → 0.

Similarly, we can also show that the second integral on the right-hand side of (3.22)

also converges to
´ t
0
aijs ∂iju(xs)ds. □

Remark 3.23. The above generalized Itô’s formula also holds for Itô process given
by (3.3), where a ∈ Sdδ , and b satisfying |bt| ⩽ b(xt) with b ∈ Ld.

Exercise 3.24. Let d ⩾ 1, p > 1∨ d
2 and W be a d-dimensional Brownian motion.

Prove that

(1) if f ∈ Lp, then
´ t
0
f(Ws)ds is well-defined;

(2) if u ∈ W 2,p, then it holds that

u(Wt)− u(0) =

ˆ t

0

∇u(Ws)dWs +

ˆ t

0

1

2
∆u(Ws)ds.





CHAPTER 4

Weak well-posedness

In this section, we study the weak well-posedness of (2.5) (with b = 0). The
core is to study the regularity of following resolvent equation:

(4.1) λu− Lu = f,

where Lu = aij∂iju, a ∈ Sdδ and uniformly continuous.

4.1. Uniqueness in law

Theorem 4.1 (Stroock-Varadhan). Under the assumptions that σ is continu-
ous and bounded, and σ(x)σt(x) > 0 for each x ∈ Rd. Then SDE (2.5) (with b = 0)
has a weak solution, and the distribution of such solution is unique.

Our strategy is

(a) Using generalized Itô’s formual and Lp-estimate for the resolvent equation to
show the uniqueness of law(Xt).

(b) Proving the finite-dimensional distribution of (Xt)t⩾0 is unique by induction.

Lemma 4.2. Let L = ∆ and p ∈ (1,∞). For any f ∈ Lp, there exists a unique
solution u ∈ W 2,p solving (4.1). Moreover, u satisfies

(4.2) λ∥u∥p + ∥∇u2∥p ⩽ C∥f∥p,

where C only depends on d and p.

Theorem 4.3. Let p ∈ (1,∞). There exists a constant λ0 = λ0(d, p, ωa) > 0
such that for any λ ⩾ λ0 and f ∈ Lp, equation (4.1) admits a unique solution
u ∈ W 2,p.

Proof. Assume that u ∈ W 2,p. We want to show that for sufficiently large λ,
it holds that

(4.3) λ∥u∥p + ∥u∥W 2,p ⩽ C∥λu− Lu∥p.

Suppose we have (4.3). Let T0 = λ−∆ and T1 = λ−L, and B = W 2,p and V = Lp.
Utilizing Lemma 2.35 and Lemma 4.2, we can see that (4.1) has a solution in W 2,p.

Now let us prove (4.3) for L = aij∂ij . Let f := λu− Lu. Assume ζ ∈ C∞
c (B2)

such that ζ ⩾ 0, ζ ≡ 1 in B1. Set ζ
z
ε = ζ((x− z)/ε). Then

λ(uζzε )− aij(z)∂ij(uζ
z
ε ) = fζzε − 2aij∂iu∂jζ

z
ε − aij∂ijζ

z
εu+ (aij − aij(z))∂ij(uζ

z
ε ).

By Lemma 4.2, we get

λ∥uζzε ∥p + ∥∇2(uζzε )∥p ⩽Cωa(2ε)∥∇2(uζzε )∥p + C∥f∥Lp(B2ε(z))

+ Cε−1∥∇u∥Lp(B2ε(z)) + Cε−2∥u∥Lp(B2ε(z)).
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Choosing ε0 > 0 sufficiently small such that Cωa(2ε0) ⩽ 1/2, then

(4.4)
λ∥u∥Lp(Bε0 (z))

+ ∥∇2u∥Lp(Bε0 (z))

⩽C∥f∥Lp(B2ε0
(z)) + Cε0

−1∥∇u∥Lp(B2ε0
(z)) + Cε−2

0 ∥u∥Lp(B2ε0
(z)).

Fact: There exist constants c = c(d, p, ε) > 0 and C = C(d, p, ε) > 0, and
a sequence {zi}i∈N ⊆ Rd such that

(4.5) c
∑
i

ˆ
|hζziε |p ⩽

ˆ
|h|p ⩽ C

∑
i

ˆ
|hζziε |p.

By (4.4) and (4.5), we obtain

λ∥u∥pp + ∥∇2u∥pp ⩽ C∥f∥pp + C∥∇u∥pp + C∥u∥pp,

where C only depends on d, p and ωa. Using intepolation theorem, one can see that

λ∥u∥p + ∥∇u∥p + ∥∇2u∥pp ⩽
1

2
∥∇2u∥p +

λ0

2
∥u∥p + C∥f∥p,

where λ0 ⩾ 1 is a constant only depends on d, p and ωa. Therefore, for any λ ⩾
λ0 ⩾ 1, we have

λ∥u∥p + ∥u∥W 2,p ⩽ C∥f∥p.
□

Now let f ∈ C∞
c (Rd). Assume that u ∈ W 2,d is a solution to (4.1) for some

λ ⩾ λ0. Applying Generalized Itô’s formula, one can see that

d
(
e−λtu(Xs+t)

)
= e−λt [−λu(Xs+t) + Lu(Xs+t)] + e−λt∇u(Xs+t)σ(Xs+t)dWs+t.

Taking expection conditional on Fs, we get

u(Xs) = E(u(Xs)|Fs) =

ˆ ∞

0

e−λtE
(
f(Xs+t)

∣∣Fs

)
dt, ∀λ ≫ 1.

This implies that P(Xs+t ∈ ·|Fs) is unique and P(Xs+t ∈ ·|Fs) = P(Xs+t ∈ ·|Xs).
Using this fact, then the uniqueness in law of Xt can be obtained by induction.

4.2. Strong Markov property

Define W to be the set of all continuous functions from R+ to Rd. Suppose
that for each starting point x the SDE (2.5) has a solution that is unique in law.
Let us denote the solution by X(x, t, ω). For each x define a probability measure
Px on W so that

P (X(x, t1) ∈ A1, · · · , X(x, tn) ∈ An)

=Px(ω(t1) ∈ A1, · · · , ω(tn) ∈ An).

Let G0
t be the σ-algebra generated by {ωs : s ⩽ t}. We complete these σ-fields

by considering all sets that are in the Px completion of G0
t for all x. Finally, we

obtain a right continuous filtration by letting Gt := ∩ε>0G0
t+ε. We then extend Px

to G∞.
For each t ⩾ 0, the shift operator θt : W → W is given by θtω(s) = ω(t+s), s ⩾

0. For any finite stopping time τ , we also set θτ (ω)(s) = ω(τ(ω) + s), s ⩾ 0.
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The strong Markov property of (Px)x∈Rd is the assertion that

Ex(Y ◦ θτ |Gτ ) = EXτ (Y ),

whenever x ∈ Rd, Y ∈ G∞ is bounded, τ a finite stopping time and Xt(ω) = ω(t)
is the canonical process.

From now on, by a slight abuse of notation, we will say (Px, Xt) is a strong
Markov process if (Px)x∈Rd satisfies the strong Markov property.

To prove the strong Markov property it suffices to show

(4.6) Ex(f(Xτ+t)|Gτ ) = EXτ
f(Xt),

for all x ∈ Rd, f ∈ Cc(Rd) and τ a bounded stopping time.

Theorem 4.4. Suppose the solution to (2.5) is weakly unique for each x ∈ Rd.
Then (Px, Xt) is a strong Markov process.

Proof. Let (W,G, (Gt)t⩾0,Px;X,W ) be a weak solution to (2.5), where Xt is
the canonical process and Wt is a Gt-Brownian motion. By definition

Xt = X0 +

ˆ t

0

σ (Xs) dWs +

ˆ t

0

b (Xs) ds.

Set X ′
t = Xτ+t and W ′

t = Wτ+t −Wτ . By definition, we have

(4.7) X ′
t = X ′

0 +

ˆ t

0

σ (X ′
s) dW

′
s +

ˆ t

0

b (X ′
s) ds.

Let Qτ : W×B(W) → [0, 1] be the regular conditional probability given Gτ . Then
for each bounded function Y ∈ G, it holds that

(4.8) Ex(Y |Gτ )(ω) =

ˆ
W

Y (ω′)Qτ (ω,dω
′) =: EQτ (ω,·)(Y ), Px-a.s.

Claim: For Px-a.s. ω ∈ W, it holds that

(a) X ′
0(ω

′) = Xτ(ω)(ω), for Qτ (ω, ·)-a.s. ω′ ∈ W.
(b) W ′ is a Brownian motion with respect to the measure Qτ (ω, ·).

By our claim above, X ′
t is a weak solution to (2.5) with initial data X ′

0 =
Xτ(ω)(ω) under Qτ (ω, ·). The uniqueness in law implies that

EQτ
f (X ′

t) = EXτ
f (Xt) , Px-a.s.

On the other hand, by definition

EQτ f (X ′
t) = EQτ f (Xτ+t) = Ex(f(Xτ+t)|Gτ ).

Thus, we get (4.6).
Our task now is to prove the claim.
For (a). Let B = {ω′ ∈ W : ω′(τ(ω′)) ∈ A ⊆ B(Rd)} ∈ Gτ . Then by the

definition of Qτ , for Px-a.s. ω ∈ W, we have

Qτ (ω,B) = Px(B|Gτ )(ω) = 1B(ω) =

{
1, if ω(τ(ω)) ∈ A

0, if ω(τ(ω)) /∈ A,

which yields claim (a) above.
For (b), we need the following
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Fact: If Wt is a Gt-Brownian motion and τ is a finite stopping time,
then Wτ+t − Wτ is a Gτ+t-Brownian motion. (This can be proved by Lévy’s
Characterization Theorem)

Using the above fact, we have

EQτ
exp

(
i

n−1∑
k=1

λk ·
(
Wτ+tk+1

−Wτ+tk

) )
=Ex

[
exp

(
i

n−1∑
k=1

λk ·
(
Wτ+tk+1

−Wτ+tk

) )∣∣∣Gτ

]
=exp

( n−1∑
k=1

|λk|2 (tk+1 − tk) /2
)
,

we get what we claimed. □



CHAPTER 5

Applications to Elliptic equations

Let Xt be the solution to (2.5) with X0 = x. We will write (Px, Xt) for the
strong Markov process corresponding to σ and b (This can be ensured by assuming
σ, b ∈ C1

b , or a ∈ Sδ, a is continuous and b is bounded).
Put L = aij∂ij + bi∂i. We always assume a and b are bounded.

5.1. Poisson equations

Consider the following Poisson equation:

(5.1) λu− Lu = f, λ > 0, f ∈ Cb.

The relationship between these two subjects can be easily established by Itô’s for-
mula:

Theorem 5.1. Suppose u is a C2
b function satisfying the above Poisson equa-

tion. Then

u(x) = Ex

ˆ ∞

0

e−λtf (Xt) dt

Proof. Applying Itô’s formula, we have du(Xt) = dMt +Lu(Xt)dt, where M
is a L2-martingale. So

e−λtu (Xt)− u (x) =

ˆ t

0

e−λsdMs +

ˆ t

0

e−λsLu (Xs) ds

− λ

ˆ t

0

e−λsu (Xs) ds.

Taking expectation, we get what we claimed. □

Let us now let D be a nice bounded domain, e.g., a ball. Poisson’s equation in
D requires one to find a function u such that{

λu− Lu = f in D

u = 0 on ∂D,

where λ ⩾ 0. Here we can allow λ to be equal to 0. Recall that if L = ∆ (Xt is a
Brownian motion), then the time to exit D, namely, τD := inf{t > 0 : Xt /∈ D}, is
finite almost surely.

Theorem 5.2. Suppose u is a solution to Poisson’s equation in a bounded
domain D that is C2 in D and continuous on D̄. Assume also that

Px(τD < ∞) = 1, x ∈ D

where τD = inf{t > 0 : x /∈ D}. Then

u(x) = Ex

ˆ τD

0

e−λsf (Xs) ds.

49
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Exercise 5.3. Prove Theorem 5.2.

5.2. Dirichlet Problems and Harmonic functions

Let D be a ball (or other nice bounded domain) and let us consider the solution
to the Dirichlet problem: given g a continuous function on ∂D, find u ∈ C(D̄) such
that u is C2 in D and

(5.2)

{
Lu = 0 in D

u = g on ∂D.

If Lu = 0 in D, we say u is L-harmonic in D.

Theorem 5.4. Assume that Px(τD < ∞) = 1 for each x ∈ D. Suppose that
u ∈ C2(D) ∩ C(D̄) satisfies (5.2), then

u(x) = Exg (XτD ) .

Proof. Let τn = inf {t : dist (Xt, ∂D) < 1/n}. By Itô’s formula,

u (Xt∧τn) = u (X0) +Mt∧τn +

ˆ t∧τn

0

Lu (Xs) ds.

Since Lu = 0 inside D, taking expectations shows

u(x) = Exu (Xt∧τn) .

We let t → ∞ and then n → ∞. By dominated convergence, we obtain u(x) =
Exu (XτD ). This is what we want since u = g on ∂D. □

Exercise 5.5. Theorem 5.4 implies the weak maximum principle: maxD u ⩽
max∂D u.

Exercise 5.6. Theorem 3.2 implies the strong maximum principle: if u is not a
constant function, then for each x ∈ D, u(x) < max∂D u

Theorem 5.7. Assume that (Px, Xt) is a strong Markov process and that
Px (τD < ∞) = 1, x ∈ D. Suppose that a, b ∈ C(D), g ∈ C(∂D), and u(x) :=
Exg(XτD ) ∈ C2(D). Then Lu = 0 in D.

Proof. Let Br(x) ⊆ D. By the strong Markov property, we have

u(x) =Exg(XτD ) = Exg(XτD ◦ θτBr(x)
) = Ex

{
Ex

[
g(XτD ◦ θτBr(x)

)
∣∣∣FτBr(x)

]}
=Ex

[
EXτBr(x)

g(XτD )
]
= Exu(XτBr(x)

).

Noting that u ∈ C2(D), by Itô’s formula,

u(Xt∧τBr(x)
)− u(x) =

ˆ t∧τBr(x)

0

Lu(Xs)ds+Mt∧τBr(x)
,

where M is a martingale. Taking expectations and letting t → ∞,

0 =
1

ExτBr(x)
Ex

ˆ τBr(x)

0

Lu(Xs)ds.

By the continuity of Lu and letting r → 0, we get Lu(x) = 0. □
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One can also consider the following Schrödinger type operator:

Lqu = Lu+ cu.

Equation involving the above operator are considerably simpler than the quantum
mechanics Schrödinger equation because here all terms are real-valued.

Theorem 5.8. Let D be a nice bounded domain, and q ∈ C(D̄) and g ∈ C(∂D).
Let u ∈ C2(D) ∩ C(D̄) that agrees with g on ∂D and satisfies Lqu = 0 in D. If

Ex exp

(ˆ τD

0

q+(Xs)ds

)
< ∞,

then

u(x) = Ex

[
g(XτD ) exp

(ˆ τD

0

q(Xs)ds

)]
.

Exercise 5.9. Prove Theorem 5.8.

Exercise 5.10. Using (3.9) to show: there exists ε > 0 such that if B ⊆ Q1, x ∈
Q1/2, and |Q1 −B| < ε, then

Ex

ˆ τQ1

0

1B (Xs) ds ⩾ c > 0,

where c is a constant only depends on d, δ and ε.

5.3. Once again on the hitting probability

Recall that

xt =

ˆ t

0

σsdWs, a =
1

2
σσt ∈ Sdδ .

In this section, we want to prove following important hitting probability es-
timate, which is a refined version of Proposition 3.19. This was first found by
Krylov-Safonov [KS79].

Recall that

σΓ(x) = inf {t > 0 : x+ xt ∈ Γ} and τQ = inf {t > 0 : x+ xt /∈ Q} .

Theorem 5.11. There is a increasing function p : (0, 1) → (0, 1), which only
depends on d and δ, such that for any Γ ⊂ Q1 and x ∈ Q1/2,

(5.3) P(σΓ(x) < τQ1
(x)) ⩾ p(|Γ|).

Before prove Theorem 5.11, we need some preparation.
One tool is a corollary of the Calderón-Zygmund cube decomposition. Let Q1

be the unit cube. We split it into 2n cubes of half side. We do the same splitting
with each one of these 2n cubes and we iterate this process. The cubes obtained in
this way are called dyadic cubes.

If Q is a dyadic cube different from Q1, we say that Q̃ is the predecessor of Q

if Q is one of the 2n cubes obtained from dividing Q̃.
We also let Q(κ) denote the cube with the same center as Q but side length κ

times as long.

Lemma 5.12 (Krylov-Safonov [KS79]). Let γ ∈ (0, 1). If Γ ⊂ Q1 and |Γ| ⩽ γ,
then there exists a sequence of dyadic cubes, say {Qi}i∈I such that

(1) the interiors of the Qi are pairwise disjoint;
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(2) |Γ ∩Qi| > γ|Qi| and |Γ ∩ Q̃i| ⩽ γ|Q̃i|, for each i ∈ I;
(3) |Γ| ⩽ γ|E| and |Γ\E| = 0, where E = ∪i∈IQ̃

i.

Proof. We use the Calderón-Zygmund decomposition. We have that

|Q1 ∩ Γ|
|Q1|

= |Γ| ⩽ γ.

We subdivide Q1 into 2n dyadic cubes. If Q is one of these 2n subcubes of Q1

and satisfies |Q∩Γ|/|Q| ⩽ γ, we then split Q into 2n dyadic cubes. We iterate this
process. In this way, we pick a family Q1, Q2 · · · of dyadic cubes (different from Q1)
such that ∣∣Qi ∩ Γ

∣∣
|Qi|

> γ, ∀i ∈ I

If x /∈ ∪i∈IQ
i then x belongs to an infinite number of closed dyadic cubes Q with

diameters tending to zero, such that |Q ∩ Γ|/|Q| ⩽ γ < 1. Applying the Lebesgue
differentiation theorem to 1Γ, we get that 1Γ(x) ⩽ γ < 1 for a.e. x /∈ ∪i∈IQ

i.
Hence Γ ⊆ ∪i∈IQ

i, except for a set of measure zero.
Consider the family of predecessors of the cubes {Qi}, and relabel them as

{Q̃i}i∈Ĩ to ensure pairwise disjointness. We immediately observe that:

Γ ⊆ ∪i∈IQ
i ⊆ ∪i∈ĨQ̃

i =: E,

except for a set of measure zero. From the way we chose the cubes Qi,∣∣∣Q̃i ∩ Γ
∣∣∣∣∣∣Q̃i

∣∣∣ ⩽ γ, ∀i ∈ Ĩ.

We conclude that

|Γ| ⩽
∑
i∈Ĩ

∣∣∣Q̃i ∩ Γ
∣∣∣ ⩽ γ

∑∣∣∣Q̃i
∣∣∣ = γ

∣∣∣∣∣∣
⋃
i∈Ĩ

Q̃i

∣∣∣∣∣∣ ⩽ γ|E|,

that finishes the proof of Lemma 5.12. □

The second tool is support theorem, which implies

Lemma 5.13. Let κ ∈ (3/4, 1). Suppose that Q̃ is the predecessor of Q, then for

each x ∈ Q̃(κ),

P
(
σQ( 1

2 )
(x) < τQ̃(x)

)
⩾ p′(κ) > 0,

where p′(κ) only depends on d, δ and κ.

Proof of Theorem 5.11. Define

p(γ) = inf
{
P (σΓ(x) < τQ1

(x)) : a ∈ Sdδ , x ∈ Q1/2,Γ ⊂ Q1, |Γ| ⩾ γ
}
.

By Proposition 3.19, we know that there exists a constant b ∈ (0, 1) such that
p(b) > 0.

We want to prove that for each γ ∈ (0, b],

p(γ) > 0 implies p (θγ) > 0, where θ =
1 + b

2
< 1.
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Assume that p(γ) > 0 for some γ ∈ (0, b], and Γ ⊆ Q1 with γ ⩾ |Γ| ⩾ θγ. Let

Qi and E = ∪i∈IQ̃
i be the sets in Lemma 5.12. Then

|E| ⩾ |Γ|/γ ⩾ θ =
1 + b

2
.

Therefore, we can find a finite subset of I, say I0, and κ ∈ (3/4, 1) such that

A :=
⋃
i∈I0

Q̃i(κ) with |A| ⩾ b.

Since |A| ⩾ b|Q1|, by Proposition 3.19,

(5.4) P (σA(x) < τQ1
(x)) ⩾ p(b) > 0, ∀x ∈ Q1/2.

Suppose that y ∈ ∂A = ∪i∈I0
∂Q̃i(κ), then y ∈ ∂Q̃i(κ) for some i ∈ I0. In this

case,

P
(
σQi(1/2)(y) < τQ1

(y)
)
⩾ P

(
σQi(1/2)(y) < τQ̃i(y)

)
⩾ p′(κ) > 0,

due to Lemma 5.13. Set

B =
⋃
i∈I0

Qi(1/2).

Then

P (σB(y) < τQ1(y)) ⩾ inf
y∈∂A

P
(
σQi(1/2)(y) < τQ̃i(y)

)
⩾p′(κ) > 0, ∀y ∈ ∂A.

The conditional version of above estimate we need below is

(5.5) P
(
σ′
B < τ ′Q1

∣∣FσA(x)

)
⩾ p′(κ) > 0.

where

σ′
B := inf {t > σA(x) : x+ xt ∈ B} and τ ′Q1

:= inf {t > σA(x) : x+ xt /∈ Q1} .

Suppose that z ∈ ∂B, then z ∈ ∂Qi(1/2) for some i ∈ I0. Since |Γ∩Qi| > γ|Qi|,
by our assumption

P
(
σΓ∩Qi(z) < τQ1

(y)
)
⩾ P(σΓ∩Qi(z) < τQi(z)) ⩾ p(γ) > 0, ∀z ∈ ∂B.

Set

D =
⋃
i∈I0

Qi.

Then
P(σΓ(z) < τQ1

(z)) ⩾ P (σΓ∩D(z) < τQ1
(z))

⩾ inf
i∈I0

P(σΓ∩Qi(z) < τQi(z)) ⩾ p(γ) > 0, ∀z ∈ ∂B.

The conditional version of above estimate we need below is

(5.6) P
(
σ′′
Γ < τ ′′Q1

∣∣Fσ′
B

)
⩾ p(γ) > 0.

where

σ′′
Γ := inf {t > σ′

B : x+ xt ∈ Γ} and τ ′′Q1
:= inf {t > σ′

B : x+ xt /∈ Q1}
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Therefore, for each x ∈ Q1/2,

P (σΓ(x) < τQ1(x))

⩾E
[
P
(
σA(x) < τQ1

(x);σ′
Γ < τ ′Q1

∣∣FσA(x)

)]
=E

[
1σA(x)<τQ1

(x)P
(
σ′
Γ < τ ′Q1

∣∣FσA(x)

)]
=E

[
1σA(x)<τQ1

(x)P
(
σ′
B < τ ′Q1

;σ′′
Γ < τ ′′Q1

∣∣FσA(x)

)]
=E

{
1σA(x)<τQ1

(x)E
[
1σ′

B<τ ′
Q1

P
(
σ′′
Γ < τ ′′Q1

∣∣Fσ′
B

) ∣∣FσA(x)

]}
(5.6)

⩾ p(γ)E
[
1σA(x)<τQ1

(x)P
(
σ′
B < τ ′Q1

∣∣FσA(x)

)]
(5.5)

⩾ p(γ)p′(κ)P (σA(x) < τQ1(x))

(5.4)

⩾ p(b)p(γ)p′(κ) ⩾ p′(κ)p2(γ) > 0.

Since the above estimate holds for any Γ ⊆ Q1 with |Γ| ⩾ θγ, we get p(θγ) > 0,
provided that p(γ) > 0. Noting that θ < 1, we obtain that p(γ) > 0 for all
γ ∈ (0, 1). □
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5.4. Harnack Inequality and Hölder estimate

In this section, we prove some theorems of Krylov and Safonov [KS81] con-
cerning (positive) L-harmonic functions. Let δ ∈ (0, 1). Set

P(δ) :=
{
{Px}x∈Rn : (Px, X) is the strong Markov process

associate with some a(·) ∈ Sdδ
}
.

Let

[u]α;D := sup
x,y∈D

|u(x)− u(y)|
|x− y|α

and osc
D

u := sup
x∈D

u(x)− inf
x∈D

u(x).

Theorem 5.14 (Hölder estimate). Suppose u is bounded in Q1 and Lu = 0 in
Q1. Then there exist α and C only depending on d and δ such that

(5.7) [u]α;Q1/2
⩽ C osc

Q1

u.

Proof. Claim: there exists a constant ρ ∈ (0, 1) such that for any z ∈
Q1/2, r ⩽ 1/2,

(5.8) osc
Qr/2(z)

u ⩽ ρ osc
Qr(z)

u.

Assume the claim is true. Suppose that x, y ∈ Q1/2 and |x− y| ≪ 1, let k ∈ N
such that 2−k−1 ⩽ |x− y| < 2−k.

|u(x)− u(y)| ⩽ osc
Q

2−k (x)
u ⩽ ρ osc

Q
2−k+1 (x)

u ⩽ · · · ⩽ Cρk osc
Q1

u

⩽Cρ− log2 |x−y| osc
Q1

u ⩽ C|x− y|− log2 ρ osc
Q1

u.

Therefore, the above claim implies (5.7) with α = log2 ρ
−1.

To prove (5.8). Without loss of generality, we can assume infx∈Qr(z) u = 0 and
supx∈Qr(z) u = 1. In this case, oscQr(z) u = 1. Let Γ := {x ∈ Qr/2 : u(x) ⩾ 1/2},
we may assume |Γ| ⩾ 1

2 |Qr/2|, if not, we replace u by 1− u. For any x ∈ Qr/2, by
Itô’s formula, Theorem 5.11 and scaling,

u(x) = Exu(XτQr∧σΓ
) ⩾

1

2
Px(σΓ < τQr

) ⩾
1

2
p(2−d−1).

Hence we get

osc
Qr/2(z)

u ⩽ 1− 1

2
p(2−d−1) =: ρ = ρ osc

Qr(z)
u.

□

Theorem 5.15 (Harnack inequality). Suppose a ∈ Sdδ and L = aij∂ij. There
exists C depending only on δ such that if u is nonnegative, bounded in Q4, and
u(Xt∧τQ4

) is a martingale, then u(x) ⩽ Cu(y) if x, y ∈ Q1.

Proof. If we look at u+ δ and let δ → 0, we may assume u > 0. By looking
at Cu, we may assume infQ1/2

u = 1. By Theorem , we know that u is Hölder
continuous in Q1, so there exists

y ∈ Q1/2 such that u(y) = 1.



56 5. APPLICATIONS TO ELLIPTIC EQUATIONS

We want to show that u is bounded above by a constant in Q1, where the constant
depends only on δ.

By the support theorem and scaling, if x ∈ Q1/2, there exists δ such that

Py

(
σQ1/2(x) < τQ2

)
⩾ δ.

By scaling, if z ∈ Q1/2(x), then Pz

(
σQ1/4(x) < τQ2

)
⩾ δ. So by the strong Markov

property,

Pz

(
σQ1/4(x) < τQ2

)
⩾ δ2.

Repeating and using induction,

Py

(
σQ

2−k (x) < τQ2

)
⩾ δk.

Then

1 = u(y) ⩾ Ey

[
u
(
XσQ

2−k (x)

)
;σQ

2−k (x) < τQ2

]
⩾ δk

(
inf

Q
2−k (x)

u

)
,

or

(5.9) inf
Q

2−k (x)
u ⩽ δ−k, ∀k ⩾ 1.

By the proof of Theorem 5.14, there exists ρ < 1 such that

osc
Q

2−k−1 (x)
u ⩽ ρ osc

Q
2−k (x)

u.

Take N large so that ρ−N ⩾ 1/
(
δ − δ2

)
. Then

Osc
Q

2N−k (x)
u ⩾ ρ−N Osc

Q
2−k (x)

u ⩾
1

δ − δ2
Osc

Q
2−k (x)

u.

Take K large so that
√
d2N−K < 1/8. Suppose there exists x0 ∈ Q1(y) such that

u (x0) ⩾ δ−K−1.

We will construct a sequence x1, x2, . . . by induction such that u(xj) ⩾
δ−K−j−1.

Suppose we have xj ∈ Q2N+1−K−j (xj−1) with u (xj) ⩾ δ−K−j−1, j ⩽ n. Since

|xj − xj−1| <
√
d2N+1−K−j , 1 ⩽ j ⩽ n, and |x0 − y| ⩽ 1, then |xn − y| < 2. Since

u (xn) ⩾ δ−K−n−1 and by (5.9), infQ2−K−n (xn) u ⩽ δ−K−n,

Osc
Q2−K−n (xn)

u ⩾ δ−K−n
(
δ−1 − 1

)
.

So oscQ2N−K−n (xn) u ⩾ δ−K−n−2, which implies that there exists xn+1 ∈Q2N−K−n(xn)

with u (xn+1) ⩾ δ−K−n−2 because u is nonnegative. By induction we obtain a se-
quence xn with xn ∈ Q3(y) and u (xn) → ∞. This contradicts the boundedness of
u on Q4. Therefore u is bounded on Q1 by δ−K−1. □



CHAPTER 6

Divergence Form Operators

Let a ∈ Sdδ . One can also consider the following Dirichlet form

E(u, v) :=
ˆ
Rd

aij∂iu∂iv = E(v, u), u, v ∈ H1.

Then,
E(u, v) = −⟨Lu, v⟩ = −⟨u, Lv⟩, u, v ∈ C∞

c ,

where
Lu = ∂j(aij∂iu).

By our assumption on a,

E(u, u) ≍
ˆ
Rd

|∇u|2 = ∥u∥2H1 .

Assume that a ∈ Sdδ ∩ C∞, and (Px, Xt) be the diffusion process associated to
For any f ∈ L1 ∩ L∞, set Ptf(x) = Exf(Xt). Then

∂tPtf = LPtf, f ∈ C∞
c .

By the symmetricity of L, we have

∂t⟨f, P ∗
t g⟩ = ∂t⟨Ptf, g⟩ = ⟨LPtf, g⟩ = ⟨PtLf, g⟩ = ⟨f, LP ∗

t g⟩, f, g ∈ C∞
c .

This yields that P ∗
t f = Ptf . Consequently,ˆ

Ptf = ∂t⟨Ptf, 1⟩ = ⟨f, Pt1⟩ =
ˆ

f.

Assume f ⩾ 0, f ∈ C∞
c and ∥f∥1 = 1.

d

dt
∥Ptf∥22 = ∂t⟨Ptf, ∂tPtf⟩ = 2⟨Ptf, LPtf⟩ ⩽ −2δ∥∇Ptf∥22

By Nash’s inequality:

∥u∥2 ⩽ C(d)∥u∥
2

d+2

1 ∥∇u∥
d

d+2

2

and the fact that ∥Ptf∥1 ⩽ ∥f∥1 = 1, we obtain

d

dt
∥Ptf∥22 ⩽ −c

 ∥Ptf∥2
∥Ptf∥

2
d+2

1


2(d+2)

d

⩽ −c
(
∥Ptf∥22

)1+ 2
d

Put θ(t) = ∥Ptf∥22. Then θ′(t) ⩽ −c (θ(t))
1+ 2

d and θ(t) > 0. This yields[
θ−

2
d (t)

]′
⩾ c > 0 ⇒ θ−

2
d (t) ⩾ ct+ θ−

2
d (0).

Thus,

∥Ptf∥22 ⩽ θ(t) ⩽ Ct−
d
2 , ∥f∥1 = 1.
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So we obtain

(6.1) ∥Pt∥L1→L2 ⩽ Ct−
d
4

For any f ∈ L2, g ∈ L1,

⟨Ptf, g⟩ = ⟨f, Ptg⟩ ⩽ C∥f∥2∥Ptg∥2 ⩽ Ct−
d
4 ∥g∥1∥f∥2.

This yields

(6.2) ∥Pt∥L2→L∞ ⩽ Ct−
d
4

(6.1) and (6.2) imply that

∥Pt∥L1→L∞ ⩽ ∥P t
2
∥L1→L2∥P t

2
∥L2→L∞ ⩽ Ct−

d
2 .

Therefore,

p(t, x, y) ⩽ Ct−
d
2 .

Set
Pφ
t f(x) := eφ(x)Pt(e

−φf)(x)

(6.3)

⟨Lφf, g⟩ =⟨∂tPφ
t f, g⟩|t=0 = ⟨eφ∂tPt(e

−φf), g⟩|t=0

=−
ˆ
Rd

aij∂i(e
−φf)∂j(e

φg)

=⟨Lf, g⟩+
ˆ

aij(∂ig∂jφf − ∂if∂jφg) +

ˆ
aij∂iφ∂jφfg

d

dt
∥Pφ

t f∥22 = ⟨LφPφ
t f, Pφ

t f⟩+
ˆ

aij∂iφ∂jφf
2.

Let φ(x) = β · x with β ∈ Rd, and ∥f∥1 = 1. Then

d

dt
∥Pφ

t f∥22 ⩽ C|β|2∥Ptf∥22 − c
(
∥Ptf∥22

)1+ 2
d

θ′(t) ⩽ C|β|2θ(t)− c(θ(t))1+
2
d



CHAPTER 7

Appendix

7.1. Probabilistic terminology

Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. X :
(Ω,F) → (E, E) a measurable map, and G a σ-field ⊆ F .

When E = R, we define the conditional expectation of X given G, E(X|G),
to be any random variable Y that satisfies

(a) Y ∈ G;
(b) for all A ∈ G, E(X;A) = E(Y ;A).

QG : Ω× E → [0, 1] is said to be a regular conditional distribution (RCD)
for X given G if

(a) For each A ∈ E , ω 7→ QG(ω,A) is a version of E(1A(X)|G);
(b) For a.e. ω ∈ Ω, A 7→ QG(ω,A) is a probability measure.

If E = Ω, X(ω) = ω, then QG is called a regular conditional probability.
The following results can be found in Durrett’s book [Dur19].

Proposition 7.1. (i) If G1 ⊆ G2 ⊆ F , then

(7.1) E[(X|G2)|G1] = E(X|G1)

(ii) Assume that X ∈ F and Y ∈ G ⊆ F , then

(7.2) E(XY |G) = E(X|G)Y.

(iii) (Jesen’s inequality) If φ is a convex function, then

(7.3) E(φ(X)|G) ⩽ φ(E(X|G)).

Proposition 7.2. Let QG be a RCD for X given G. If f : E → R satisfying
E|f(X)| < ∞, then

E(f(X)|G)(ω) =
ˆ
E

f(x)QG(ω,dx) a.s..

Theorem 7.3. RCD exists if E is a standard measure space and E = B(E).

Proposition 7.4. Assume X ⩾ 0, f : R+ → R+ such that f ∈ C1(R+) and
f(0) = 0. Then

(7.4) Ef(X) =

ˆ ∞

0

f ′(t)P(X > t)dt.

Exercise 7.5. If X ⩾ 0, f : R+ → R+ such that f ∈ C1(R+) and f(∞) = 0. Then

(7.5) Ef(X) = −
ˆ ∞

0

f ′(t)P(X ⩽ t)dt.
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7.2. Maximal Principle

Consider the linear parabolic equation:

∂tu = aij∂iju+ bi∂iu+ cu,

where aij is uniformly elliptic, bi and c are bounded and continuous.

Proposition 7.6 (Weak Maximum Principle). If c(x, t) ⩽ 0 and u is bounded,
then

sup
R+×Rd

u = sup
{0}×Rd

u.

Proposition 7.7 (Strong Maximum Principle). If u achieves its maximum (or
minimum) at a point (t0, x0) ∈ R+ × Rd, then u is constant in [0, t0]× Rd.

7.3. Schauder estimate

Let S be the Schwartz space of all rapidly decreasing functions, and S ′ the
dual space of S called Schwartz generalized function (or tempered distribution)

space. Given f ∈ S , let Ff = f̂ be the Fourier transform defined by

f̂(ξ) :=

ˆ
Rd

e−i2πξ·xf(x)dx.

Let χ : Rd → [0, 1] be a smooth radial function with

χ(ξ) = 1, |ξ| ⩽ 1, χ(ξ) = 0, |ξ| ⩾ 3/2.

Define

φ(ξ) := χ(ξ)− χ(2ξ).

It is easy to see that φ ⩾ 0 and supp φ ⊂ B3/2 \B1/2 and formally

k∑
j=−k

φ(2−jξ) = χ(2−kξ)− χ(2k+1ξ)
k→∞→ 1.(7.6)

In particular, if |j − j′| ⩾ 2, then

suppφ(2−j ·) ∩ suppφ(2−j′ ·) = ∅.

From now on we shall fix such χ and φ and define

∆jf := F−1(φ(2−j ·)Ff), j ∈ Z.

Set h := F−1(φ), then hj := F−1(φ(2−j ·)) = 2jdh(2j ·). Noting that we haveˆ
Rd

hj = φ(0) = 0.

We first recall the following useful lemmas.

Lemma 7.8. Let α ∈ (0, 1). For any u ∈ Cα, it holds that

1

C
sup
j∈Z

2jα∥∆ju∥0 ⩽ [u]α ⩽ C sup
j∈Z

2jα∥∆ju∥0,(7.7)

where

[u]α := sup
x ̸=y

|u(x)− u(y)|
|x− y|α

,

and C only depends on d and α.
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Proof. 1) For any x ̸= y, we have

|u(x)− u(y)| ⩽
∑
j

|∆ju(x)−∆ju(y)| ⩽
∑
j

(|x− y|∥∇∆ju∥0) ∧ (2∥∆ju∥0)

⩽C
∑
j

(2j |x− y| ∧ 1)∥∆ju∥0

⩽C2jα∥∆ju∥0

|x− y|
∑

j⩽log2 |x−y|

2j(1−α) +
∑

j⩾log2 |x−y|

2−jα


⩽C|x− y|α sup

j
2jα∥∆ju∥0.

2) For any j ∈ Z and x ∈ Rd, we have

|∆ju(x)| =
∣∣∣∣ˆ

Rd

u(x− y)hj(y)dy

∣∣∣∣ = ∣∣∣∣ˆ
Rd

[u(x− y)− u(x)]hj(y)dy

∣∣∣∣
⩽[u]α2

jd

ˆ
Rd

|y|α|h(2jy)|dy ⩽ C2−jα[u]α.

□

Lemma 7.9. There is a constant C = C(d, α), such that for any u ∈ C2,α and
λ ⩾ 0,

(7.8) λ∥u∥0 ⩽ C∥λu−∆u∥0
and

(7.9) λ[u]α + [∇2u]α ⩽ C[λu−∆u]α

Proof. 1) If there exits x0 ∈ Rd such that u(x0)( or − u(x0)) = ∥u∥0, then
∆u(x0) ⩽ 0 (∆u(x0) ⩾ 0). This implies |λu(x0)| ⩽ |λu(x0) −∆u(x0)|; If such x0

does not exist, then we can consider function uR = uχ(·/R) (R ≫ 1).
2) We only prove the case λ = 0. Let f = ∆u. Define

φkl(ξ) :=
ξkξl
|ξ|2

φ(ξ), hkl(x) := F−1(φkl)(x); φkl
j (ξ) := φkl(2−jξ), hkl

j (x) := 2jdhkl(2jx).

It is easy to see

∂klu =
∑
j∈Z

ukl
j :=

∑
j∈Z

φkl
j (D)f =

∑
j∈Z

hkl
j ∗ f.

For any x ∈ Rd, noticing hkl ∈ S (Rd) and
´
hkl = φ(0) = 0, we get

|ukl
j (x)| =

∣∣∣∣ˆ
Rd

hkl
j (y)f(x− y)dy

∣∣∣∣ = ∣∣∣∣ˆ
Rd

hkl(z)(f(x− 2−jz)− f(x))dz

∣∣∣∣
⩽
ˆ
Rd

|hkl(z)| · [f ]α|2−jz|αdz ⩽ C[f ]α2
−jα

This together with Lemma 7.8 yields that

[∇2u]α ⩽ C sup
j,k,l

2jα∥∆j∂klu∥0 ⩽ C[f ]α.

□
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7.4. Monge-Ampère Equation

Lemma 7.10 (Area formula). Consider a locally Lipschitz function f : Rd → Rd

and a Borel set A ⊆ Rd. Then the function y 7→ NA(y) := card{f−1(y) ∩ A}} is
measurable and ˆ

A

|det(∇f(x))|dx =

ˆ
Rn

NA(y)dy ⩾ L d(f(A)).

Consequently, for any g ⩾ 0,

(7.10)

ˆ
f(A)

g(y)dy ⩽
ˆ
A

g(f(x))|det∇f(x)|dx.

To motivate the definition of weak solutions to (3.7), given an open set D ⊂
Rn, consider u : D → R a convex function of class C2 satisfying (3.7) for some
f : D → R+. Then given any Borel set E ⊂ D, it follows by the area formula thatˆ

E

f dx =

ˆ
E

detD2udx = |∇u(E)|.

Notice that while the above argument needs u to be of class C2, the identityˆ
E

f = |∇u(E)|

makes sense if u is only of class C1. To find a definition when u is merely convex
one could try to replace the gradient ∇u(x) with the subdifferential ∂u(x) and ask
for the above equality to hold for any Borel set E. Here ∂u(x) is given by

∂u(x) :=
{
p ∈ Rd : u(y) ⩾ u(x) + ⟨p, y − x⟩ ∀y ∈ D

}
.

This motivates the following definition:

Definition 7.11. Given an open set D ⊂ Rn and a convex function u : D → R,
we define the Monge-Ampère measure associated to u by

µu(E) :=

∣∣∣∣∣ ⋃
x∈E

∂u(x)

∣∣∣∣∣
The basic idea of Alexandrov was to say that u is a weak solution of (3.7) if

µu|D = ν|D.

Lemma 7.12. Let u, v : D → R be convex functions. Then

µu+v ⩾ µu + µv and µλu = λnµu ∀λ > 0.

The following result is the celebrated Alexandrov maximum principle.

Theorem 7.13. Let D be an open bounded convex set, and let u : D → R be
a convex function such that u|∂D = 0. Then there exists a dimensional constant
C = C(d) such that

(7.11) |u(x)| ⩽ C(d) diam(D)
d−1
d dist(x, ∂D)

1
d |∂u(D)| 1d , ∀x ∈ D.

Proof. Let (x, u(x)) be a point on the graph of u, and consider the convex

“conical” function y 7→ Ĉx(y) with vertex at (x, u(x)) that vanishes on ∂D. Since

u ⩽ Ĉx in D (by the convexity of u), Lemma 2.7 implies that∣∣∣∂Ĉx(x)
∣∣∣ ⩽ ∣∣∣∂Ĉx(D)

∣∣∣ ⩽ |∂u(D)|;
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so, to conclude the proof, it suffices to bound |∂Ĉx(x)| from below. It is not hard
to see

• ∂Ĉx(x) contains the ball Bρ with ρ = |u(x)|/diam(D)

• ∂Ĉx(x) contains a vector of norm |u(x)|/dist(x, ∂D)

Thus,

∂Ĉx(x) ⊃ Bϱ(0) ∪ {q}, |q| = |u(x)|/dist(x, ∂D).

Since ∂Ĉx(x) is convex, it follows that ∂Ĉx(x) contains the cone C generated by q
and Σq := {p ∈ Bρ : ⟨p, q⟩ = 0}. Therefore

c(d)ρd−1|q| = |C| ⩽ |∂u(D)|.

□

Theorem 7.14. Let D be an open bounded convex set, and let ν be a Borel
measure on D with ν(D) < ∞. Then there exists a unique convex function u :
D → R solving the Dirichlet problem{

µu = ν in D

u = 0 on ∂D

Proof. By the stability result proved in Lemma below, since any finite mea-
sure can be approximated in the weak* topology by a finite sum of Dirac deltas,

we only need to solve the Dirichlet problem when ν =
∑N

i=1 αiδxi with xi ∈ D and
αi > 0. To prove existence of a solution, we use the so-called Perron method: we
define

S[ν] := {v : Ω → R convex : v|∂Ω = 0, µv ⩾ ν in Ω}
and we show that the largest element in S[ν] is the desired solution. We split the
argument into several steps.

Step 1: S[ν] ̸= ∅. To construct an element of S[ν], we consider the “coni-
cal” function Cxi

, that is 0 on ∂Ω and takes the value −1 at its vertex xi. The
Monge–Ampère measure of this function is concentrated at xi and has mass equal
to some positive number βi corresponding to the measure of the set of supporting

hyperplanes at xi. Now, consider the convex function v̄ =
∑N

i=1 λCxi , where λ has
to be chosen. We notice that v̄|∂Ω = 0. In addition, provided λ is sufficiently large,
Lemma below implies that

µv̄ ⩾
N∑
i=1

µλĈxi
=

N∑
i=1

λdµĈxi
=

N∑
i=1

λdβiδxi
⩾

N∑
i=1

αiδxi
= ν.

This yields v̄ ∈ S[ν].
Step 2: v1, v2 ∈ S[ν] ⇒ w := max {v1, v2} ∈ S[ν]. Set

Ω0 := {v1 = v2} , Ω1 := {v1 > v2} , and Ω2 := {v1 < v2}

Also, given a Borel set E ⊆ Ω, consider Ei = E ∩ Ωi.
Since Ω1 and Ω2 are open sets, w|Ω1

= v1 and w|Ω2
= v2,

∂w(E1) = ∂v1(E1), ∂w(E2) = ∂v2(E2).

In addition, since w = v1 on Ω0 and w ⩾ v1 everywhere else, we have

∂v1(E) ⊆ ∂w(E0).
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Therefore,
µw(E) ⩾ µv1(E0 ∪ E1) + µv2(E2) ⩾ ν(E).

Step 3: u := supv∈S[ν] v belongs to S[ν]. Let wm ↑ u locally uniformly. Then

µwm
⇀ ∗µu. Also, we deduce immediately that u|∂Ω = 0 by construction; hence,

u ∈ S[ν].
Step 4: The measure µu is supported at the points {x1, · · ·xN}. Otherwise,

there exists a set E ⊆ D such that

E ∩ {x1, . . . , xN} = ∅ and |∂u(E)| = µu(E) > 0

Therefore, ∣∣∂u(E)\[∪N
i=1∂u(xi) ∪ ∂u(∂D)]

∣∣ = |∂u(E)| > 0

Let x0 ∈ E and p ∈ ∂u(x0)\[∪N
i=1∂u(xi) ∪ ∂u(∂D)]. Then there exists δ > 0 such

that

(7.12) u ⩾ ℓx0,p + 2δ on {x1, . . . , xN} ∪ ∂Ω,

where ℓx0,p(x) = u(x0) + p · (x − x0). Set ū := max{ℓx0,p + δ, u} ≩ u. Notice
that ū is convex, ū ⩾ u, and it follows by (7.12) that ū = u in a neighborhood of
{x1, . . . , xN} ∪ ∂Ω. In particular, ū|∂Ω = 0 and ∂ū (xi) = ∂u (xi), which implies
that u log eqqū ∈ S[ν]. This is a contradiction.

Step 5: µu = ν. By Step 3 and Step 4, we know that µu =
∑N

i=1 βiδxi
with

βi ⩾ αi. Assume that β1 = µu(x1) > ν(x1) = α1. □
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