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1. Brownian Motion

The Brownian motion is a continuous stochastic process characterized by independent in-

crements that follow a normal distribution. It is widely used to model the irregular motion

of tiny particles suspended in a fluid. As one of the fundamental concepts in stochastic anal-

ysis, Brownian motion serves as a cornerstone for understanding more complicate stochastic

processes.

In physics, Brownian motion was discovered in 1827 by the British botanist Robert Brown.

While observing pollen particles suspended in water under a conventional microscope, he

noticed their irregular motion. Since 1860, numerous scientists have studied this phenomenon

and identified the following key characteristics of Brownian motion:

(1) The motion of the particles consists of translation and rotation;

(2) The movements of the particles are apparently uncorrelated, even when the particles

approach each other to distances smaller than their diameters;

(3) The smaller the particles, the lower the viscosity of the liquid, or the higher the

temperature, the more active the motion of the particles;

(4) The composition and density of the particles have no effect on their motion;

(5) The motion of the particles never stops.

In 1905, Einstein proposed a related theory. His theory has two parts: the first part

defines the diffusion equation for Brownian particles, where the diffusion coefficient is related

to the mean square displacement of the Brownian particles, and the second part describes

the relationship between the diffusion coefficient and measurable physical quantities. Here

we briefly introduce the first part: determining the distance a Brownian particle moves in a

given time. Classical mechanics cannot determine this distance because a Brownian particle

will be subjected to a large number of collisions, approximately 1014 collisions per second.

Einstein considered the position of the particle in space at time t as a random variable Xt,

and let ρ(t, x) be the density of Xt. Assume τB is the relaxation time, and ∆t ≫ τB. The

increment Xt+∆t−Xt over the time interval ∆t is also a random variable, and its probability

density is assumed to be φ∆t (depending only on ∆t). For a homogeneous liquid, we can

naturally assume that φ∆t is rotationally symmetric. Using Taylor expansion:

ρ(t, x) + ∂tρ(t, x)∆t ≈ ρ(t+∆t, x) =

ˆ
R3

ρ(t, x− y)φ∆t(y)dy

≈ ρ(t, x)

ˆ
R3

φ∆t(y)dy −∇ρ(t, x) ·
ˆ
R3

yφ∆t(y)dy

1.5 weeks.
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+
1

2
∂yρ(t, x)

ˆ
R3

yφ∆t(y)dy

= ρ(t, x) +
1

2

ˆ
R3

|y|2φ∆t(y)dy∆ρ(t, x).

Therefore,

∂tρ =

´
R3 |y|2φ∆t(y)dy

2∆t
∆ρ.

From both theoretical and experimental perspectives, it is reasonable to assume that ν =
1

2∆t

´
R3 |y|2φ∆t(y)dy is a constant, called the diffusion coefficient of the Brownian particle.

Thus, the above equation can be written as:

∂tρ = ν∆ρ, ρ(0, x) = f(x).

The solution to this heat equation is:

ρ(t, x) =

ˆ
R3

1

(4πνt)3/2
e−

(x−y)2

4νt f(y)dy.

From this, we obtain that if X0 = x, then the distribution of Xt is a standard Gaussian

distribution. The second part of Einstein’s theory relates the diffusion constant to physically

measurable quantities, such as the mean square displacement of the particle over a given time

interval. This result allows for the experimental determination of Avogadro’s number and,

consequently, the size of molecules. However, we will not discuss this further here.

1.1. Mathematical Definition of Brownian Motion. Note that Einstein did not ex-

plicitly establish a mathematical model for Brownian motion. This problem was solved by

Wiener.

Definition 1.1. (Wt)t⩾0 is a stochastic process satisfying:

(1) Stationary independent increments and Gaussian property: For t > s, the

increment Wt−Ws follows a normal distribution with mean 0 and variance (t−s)Id×d,

and the increment Wt −Ws is independent of the process (Wu)0⩽u⩽s before time s;

(2) Path continuity: (Wt)t⩾0 is almost surely continuous;

Usually, we assume W0 = 0, in which case, W is called standard Brownian motion.

Of course, a natural mathematical question is whether such a stochastic process exists.

A stochastic process defined on (Ω,F ,P) taking value in a measurable space (E, E) can

be understood in various ways. It involves a collection of random variables Xt ∈ E indexed

by a parameter set T (usually, T = N or R+), where Xt is a measurable map from (Ω,F ,P)

to (E, E) for each t ∈ T. The parameter set T typically represents time and can be discrete

or continuous. The process can also be regard as a measurable map from (Ω,F ,P) to the

space of functions ET. The Kolmogorov σ-field on ET is the smallest σ-field making the

projections πt : ET ∋ f 7→ f(t) ∈ E measurable. This definition ensures that a random

map Ω ∋ ω 7→ X·(ω) ∈ ET is measurable if its component random variables Xt : Ω → E

are measurable for all t ∈ T. Therefore, the mapping ω 7→ X·(ω) induces a measure on

(ET, ET) denoted by P. The underlying probability model (Ω,F ,P) is replaceable by the
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canonical model (P, ET, ET) with a specific choice of Xt(f) = πt(f) = f(t). In simpler terms,

a stochastic process is just a probability measure P on (ET, ET).

Another point of view is that the only relevant objects are the joint distributions of

(Xt1 , Xt2 , · · · , Xtn) for every n and every finite subset I = (t1, t2, ..., tn) of T. These can

be specified as probability measures µI on Rn. These µI cannot be totally arbitrary. If we

allow different permutations of the same set, so that I and I ′ are permutations of each other

then µI and µI′ should be related by the same permutation. If I ⊆ I ′, then we can obtain the

joint distribution of (Xt)t∈I by projecting the joint distribution of (Xt)t∈I′ from Rn′
to Rn

where n and n′ are the cardinalities of I and I ′ respectively. A stochastic process can then

be viewed as a family (µI) of distributions on various finite dimensional spaces that satisfy

the consistency conditions. A theorem of Kolmogorov says that this is not all that different.

Any such consistent family arises from a P on (ET, ET) which is uniquely determined by the

family (µI).

Definition 1.2. We say A measurable space (E, E) is said to be standard if there exists a

Polish space X such that (E, E) is isomorphic (as a measurable space) to (X,B(X)).

Theorem 1.1 (Kolmogorov’s consistency Theorem, cf. [Yan21]). Let E be a standard mea-

sure space. Assume that we are given for every t1, ..., tn ∈ T a probability measure µt1···tn on

En, and that these probability measures satisfy:

(i) for each τ ∈ Sn and Ai ∈ E,

µt1···tn(A1 × ...×An) = µtτ(1)···tτ(n)
(Aτ(1) × ...×Aτ(n));

(ii) for each Ai ∈ E,

µt1···tn(A1 × ...×An−1 × E) = µt1···tn−1(A1 × ...×An−1).

Then, there is a unique probability measure P on (ET, ET) such that for t1, ..., tn ∈ T, A1, ..., An ∈
E: P(f(t1) ∈ A1, ..., f(tn) ∈ An) = µt1,...,tn(A1 × ...×An).

Let T = R+ and E be a Polish space. By Theorem 1.1, we can define a probability

measure P on ER+ such that the canonical process Xt(f) = f(t) satisfies the conditions

in Theorem 1.1. However, whether the measure is concentrated on the space of continuous

functions is not a simple question. In fact, since T = R+ is uncountable the space of bounded

functions, continuous functions, etc., are not measurable sets of ER+ . They do not belong

to the natural σ-field. Essentially, in probability theory, the rules involve only a countable

collection of sets at one time, and any information that involves the values of an uncountable

number of measurable functions is beyond reach. There is an intrinsic reason for this. In

probability theory, we can always change the values of a random variable on a set of measure

0, and we have not changed anything significant. Since we are allowed to mess up each

function on a set of measure 0, we have to assume that each function has indeed been messed

up on a set of measure 0. If we are dealing with a countable number of functions, the ‘mess

up’ has occurred only on the countable union of these individual sets of measure 0, which, by

the properties of a measure, is again a set of measure 0. On the other hand, if we are dealing

with an uncountable set of functions, then these sets of measure 0 can possibly gang up on

us.

Often, we aim to find a version of stochastic process with continuous trajectories, or

equivalently, to establish a measure P on C(R+;Rd) with the natural σ-field. However, this
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is not always achievable. We are looking for sufficient conditions on the finite dimensional

distributions (µI) to ensure the existence of P on C(R+;Rd).

Theorem 1.2 (Kolmogorov). Let I = [0, T ], and let p > 1 and β ∈ (1/p, 1). Assume

(Yt ∈ Rd)t∈I satisfies

E|Ys − Yt|p ⩽ c|t− s|1+βp, ∀t, s ∈ I. (1.1)

Then there exists a version of Y , say X (for each t ∈ I, P(Xt = Yt) = 1), such that

P

(
sup
t∈I

|Xt −Xs|
|t− s|α

⩽ K

)
= 1,

where α ∈ (0, β − 1/p), K = K(α, β, p, c, I, ω) and EKp < ∞.

Proof. Regard Y as a measurable function from Ω× I to Rd. By Lemma 1.3 below, there is

a null set N ⊆ Ω and a measurable function X : Ω× I → Rd, such that for each ω /∈ N ,

L 1 ({t ∈ I : Xt(ω) ̸= Yt(ω)}) = 0,

and X(ω)· is a continuous function. Moreover,

∥X·(ω)∥Cα(I) ≲ K(ω) :=

(¨
I×I

|Yt(ω)− Ys(ω)|p

|t− s|2+αp
dsdt

)1/p

∈ Lp(P).

By Fubini theorem, there exists a L 1-null set N ⊆ I, such that for each t /∈ N , P(Xt ̸=
Yt) = 0. For any t0 ∈ N , by (1.1), one can see that Ytn

P−−−−−−−→
I\N∋tn→t0

Yt0 . On the other hand,

Ytn
a.s
= Xtn → Xt0 , so we have Xt0

a.s
= Yt0 . Therefore, X is a continuous version of Y . □

Lemma 1.3 (Fractional Sobolev inequality). Let D be an open set in Rn, p > n and s ∈
(n/p, 1). Let f : D → Rd be a measurable function. Assume¨

D×D

|f(x)− f(y)|p

|x− y|n+sp
dxdy < ∞.

Then there exists a version of f , say f̃ , such that

sup
x,y∈D

|f̃(x)− f̃(y)|
|x− y|s−

n
p

⩽ C

(¨
D×D

|f(x)− f(y)|p

|x− y|n+sp
dxdy

)1/p

, (1.2)

Here C only depends on n, s, p and D.

Thanks to Theorem 1.2 and the discussion after Theorem 1.1, we can first construct a

probability measure P on Ω = (Rd)R+ such that

P(Yt1 ∈ A1, · · · , Ytn ∈ An)

=

ˆ
A1

· · ·
ˆ
An

pt1(x1)pt2−t1(x1 − x2) · · · ptn−tn−1(xn−1 − xn)dx1 · · · dxn,

where Yt(ω) = ω is the canonical process, and pt(x) = (2πt)−
d
2 exp(−|x|2/(2t)). Then using

Theorem 1.2, one can establish the existence of an α-Hölder continuous version of Y with

α ∈ (0, 12), which is a Brownian motion. Once we get such a continuous version, in fact

we obtain a probability measure P on C(R+;Rd), under which the canonical process is a

Brownian motion.



Brownian Motion and Diffusion 5

2. Markov Processes

Intuitively speaking, a process X is Markov if, given its whole past up until some time s,

the future behaviour depends only its state at time s. To make this precise, let us suppose

that X takes values in a measurable space (E, E) and, to denote the past, let Ft be the

sigma-algebra generated by {Xs : s ⩽ t}. The Markov property then says that, for any times

s ⩽ t and bounded measurable function f : E → R, the expected value of f(Xt) conditional

on Fs is a function of Xs. Equivalently,

E [f(Xt) | Fs] = E [f(Xt) | Xs] , a.s. (2.1)

More generally, this idea makes sense with respect to any filtered probability space F =

(Ω,F , (Ft)t⩾0,P). A process X is Markov with respect to F if it is adapted and (2.1) holds

for times s ⩽ t.

Continuous time Markov processes are usually defined in terms of transition functions.

These specify how the distribution of Xt is determined by its value at an earlier time s.

To state the definition of transition functions, it is necessary to introduce the concept of

transition probabilities.

Definition 2.1. A (transition) kernel Q on a measurable space (E, E) is a map

Q :E × E → R+ ∪ {∞},
(x,A) 7→ N(x,A)

such that for each x ∈ E, the map A 7→ Q(x,A) is a measure, and for each A ∈ E, the

map x 7→ N(x,A) is measurable. If, furthermore, Q(x,E) = 1 for all x ∈ E, then Q is a

transition probability.

For any f ∈ B(E), we set

Qf(x) =

ˆ
E
f(y)Q(x, dy).

A transition probability, then, associates to each x ∈ E is a probability measure on (E, E).
This can be used to describe how the conditional distribution of a process at a time t depends

on its value at an earlier time s by

P(Xt ∈ A | Fs) = Q(Xs, A).

AMarkov process is defined by a collection of transition probabilities (Ps,t)t⩾s, describing how

it goes from its state at time s to a distribution at time t. We only consider the homogeneous

case here, meaning that Ps,t depends only on the size t − s of the time increment, so the

notation Ps,t can be replaced by Pt−s.

Definition 2.2. A homogeneous transition function on (E, E) is a collection Pt, t ≥ 0 of

transition probabilities on (E, E) such that

Ps+t = PsPt, s, t ⩾ 0

A process X is Markov with transition function P = (Pt)t⩾0, and with respect to a filtered

probability space (Ω,F , (Ft)t≥0,P) if it is adapted and

E (f(Xt) | Fs) = Pt−sf(Xs), t > s.
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The identity Ps+t = PsPt is known as the Chapman-Kolmogorov equation, and is required

so that the transition probabilities are consistent with the tower rule for conditional expec-

tations. Alternatively (Pt)t⩾0 forms a semigroup.

The distribution of a Markov process is determined uniquely by its transition function and

initial distribution.

Proposition 2.1. Suppose that X is a Markov process on (E, E) with transition function

P such that X0 has distribution µ. Then, for any times 0 = t0 < t1 < · · · < tn and bounded

measurable function f : En+1 → R,

E[f(Xt0 , . . . , Xtn)]

=

ˆ ˆ
· · ·
ˆ

f(x0, . . . , xn)Ptn−tn−1(xn−1,dxn) · · ·Pt1−t0(x0,dx1)µ(dx0).

Proposition 2.2. Let (E, E) be a measurable space, and Ω = ER+. Denote its coordinate

process by X,

Xt : Ω → E, ω 7→ Xt(ω) = ω(t).

Also, let F0 be the σ-algebra generated by {Xt : t ∈ R+} and, for each t ⩾ 0, let F0
t be the σ-

algebra generated by {Xs : s ≤ t}. So, (F0
t )t⩾0 is a filtration on the measurable space (Ω,F0)

with respect to which X is adapted.

Then, for every transition function (Pt)t⩾0 and probability distribution µ on E, there is a

unique probability measure P on (Ω,F0) under which X is a Markov process with transition

function (Pt)t⩾0 and initial distribution µ.

Remark 2.1. The superscripts ′0′ just denote the fact that we are using the uncompleted

σ-algebras. Once the probability measure has been defined, it is standard practice to complete

the filtration, which does not affect the Markov property.

The unique measure with respect to which X is Markov with the given transition function

and initial distribution is denoted by Pµ, and expectation with respect to this measure is

denoted by Eµ. In particular, if µ = δx then we write Px ≡ Pδx and, similarly, write Ex for

Eδx .

3. Diffusion

Diffusion is a physical phenomenon that describes the process by which several substances

mixed together tend to move towards equilibrium. For example, Brownian motion describes

the process by which pollen particles suspended in a liquid gradually ”diffuse” to a ”uniform”

distribution. A natural question arises: if the physical properties of the liquid at different

times and locations affect the pollen particles differently, for instance, in a flowing liquid,

what motion laws will the pollen particles follow?

The diffusion process does not have a unified mathematical definition, but its core is a

Markov process with continuous trajectories. Similar to Brownian motion, the evolution of

its macroscopic properties can be characterized by establishing equations that satisfy the

transition probabilities. Alternatively, by tracking the trajectory of each pollen particle,

a probability space can be constructed, and stochastic differential equations (SDE) can be

established to describe the motion laws they obey from a microscopic perspective.
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We will first present its construction using the first method, which can be traced back to

Kolmogorov’s early groundbreaking papers on Markov processes.

3.1. Fokker-Planck-Kolmogorov equations. Compared to Brownian motion, we give

three conditions for a time-homogeneous diffusion process Xt: for any ε > 0,

lim
t→0

t−1 sup
x∈Rd

Pt(x,B
c
ε(x)) = 0, (3.1)

lim
t→0

t−1

ˆ
|y−x|⩽ε

(y − x)Pt(x, dy) = b(x), (3.2)

lim
t→0

(2t)−1

ˆ
|y−x|⩽

(y − x)i (y − x)j Pt(x,dy) = aij(x) i, j = 1, · · · , d. (3.3)

b and a are called the drift coefficient and diffusion coefficient of the diffusion process (Xt)t⩾0,

respectively. In the sequel, we always assume that

a, b ∈ L∞.

We want to derive the evolution laws that the transition probabilities should satisfy. Let

f ∈ C2
b (Rd). Then

Ptf(x)− f(x)

t

=
1

t

ˆ
|y−x|⩽ε

(f(y)− f(x))Pt(x, dy) +
1

t

ˆ
|y−x|>ε

(f(y)− f(x))Pt(x,dy) =: I1 + I2.

By Taylor’s expansion theorem, and using (3.2) and (3.3), we have

I1 =
1

t

ˆ
|y−x|⩽ε

(y − x)iPt(x,dy) ∂if(x)

+
1

2t

ˆ
|y−x|⩽ε

(y − x)i(y − x)jPt(x,dy) ∂ijf(x) + o(1)

→b(x) · ∇f(x) + a(x) : ∇2f(x), t → 0.

Applying (3.1), we have I2 → 0, t → 0. Therefore,

lim
t→∞

Ptf(x)− f(x)

t
= a(x) : ∇2f(x) + b(x) · ∇f(x) =: Lf(x), f ∈ C2

b (Rd). (3.4)

Assume that

Pt(x,dy) = p(t, x, y)dy and Ptf ∈ C2
b , t ⩾ 0.

Thanks to the Chapman-Kolmogorov equation and (3.4), one can verify that

∂tPtf(x) = LPtf(x), lim
t→0

Ptf(x) = f(x),

which can be read as

∂tp(·, y) = Lp(·, y), lim
t→0

p(t, ·, y) = δy. (3.5)

Kolmogorov’s idea for constructing the diffusion process corresponding to L involves solving

the partial differential equation (PDE) (3.5) (in fact his solves the forward equation in his

paper) to obtain the density of the process, p(t, x, ·).

Fix y ∈ Rd, put

La(y)f(x) := aij(y)∂ijf(x)
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and

py0(t, x, z) :=
[
πt d
√

det(a(y))
]− d

2
exp

(
−
a−1
ij (y)(x− z)i(x− z)j

t

)
.

Then

∂tp
y
0(·, z) = La(y)p

y
0(·, z), y, z ∈ Rd.

Recall that p satisfies (3.5), therefore,

∂tp = La(y)p+ (L− La(y))p.

Formally, using Duhamel’s formula, we have

p(t, x, y) = py0(t, x, y) + [py0 ⊗ (L− La(y))p](t, x, y),

p =
∞∑
n=0

=:qn

p0 ⊗
︷ ︸︸ ︷
[(L− La(y))p0]

⊗n︸ ︷︷ ︸
=:pn

= p0 + p0 ⊗ q, q =
∑
n=1

qn. (3.6)

and

p = p0 + p0 ⊗ (L− La(y))p (3.7)

For notion simplicity, we omit the superscript y below.

We attempt to show that the infinite series in (3.6) do convergence (in some sense), and p

given by (3.6) satisfying (3.7) is a fundamental solution to (3.5), provided that the coefficients

satisfies

Assumption 1. There exists α ∈ (0, 1) and Λ > 1 such that

Λ−1|ξ|2 ⩽ aijξiξj ⩽ Λ|ξ|2

and

∥a∥Cα = N1 < ∞, ∥b∥L∞ = N2 < ∞.

3.2. Heat Kernel Estimate I. In this subsection, we use the classical Levi’s freezing co-

efficients method to prove that (3.5) admits a nice solution provided that the coefficients a

and b satisfies Assumption 1.

For simplicity, we always assume b = 0 in the sequel. Readers interested in the general

case can work out the details themselves.

Put

D = {(t, x, y) : 0 ⩽ t ⩽ 1, x, y ∈ Rd, x ̸= y}.

Theorem 3.1. Under Assumption 1, there is a unique continuous function p(t, x, y) ∈ D
such that

∂tp(·, y) = Lp(·, y), y ∈ Rd.

Moreover,

(i) for any f ∈ C0(Rd), Ptf → f uniformly;

(ii)

p ⩾ 0 and

ˆ
Rd

p(t, x, y)dy = 1, t ⩾ 0, x ∈ Rd; (3.8)

(iii)

p(t+ s, x, y) =

ˆ
Rd

p(t, x, z)p(s, z, y)dz; (3.9)
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(iv)

t−
d
2 exp(−C|x|2/t)) ≲ p(t, x, y) ≲ t−

d
2 exp(−|x|2/(Ct))). (3.10)

Before giving the full proof for Theorem 3.1, we introduce some notations. For any λ >

0, γ ∈ R, put

ϱλ,γ(t, x) := t(−d+γ)/2e−
λ|x|2

t , t > 0, x ∈ Rd.

ϱλ is denoted by ϱλ for simplicity. For any p(1), p(2), · · · , p(n) : D → R, define[
p(n) ⊗ · · · ⊗ p(2) ⊗ p(1)

]
(t, x, y)

:=

ˆ
0<τ1<···<τn−1<t

ˆ
Rnd

p(n)(t− τn−1, x, zn−1) · · ·

p(2)(τ2 − τ1, z2, z1)p
(1)(τ1, z1, y)dz1 · · · dzn1 dτ1 · · · dτn−1.

Recall that

p0(t, x, z) :=
[
πt d
√
det(a(y))

]− d
2
exp

(
−
a−1
ij (y)(x− z)i(x− z)j

t

)
.

Lemma 3.2. For any k ∈ N, there is a constant λk > 0 such that

|∇k
xp0| ≲ ϱλk,−k

and for any t ∈ [0, 1], x1, x2, z ∈ Rd and β ∈ (0, 1), it holds that

|∇k
xp0(t, x1, z)−∇k

xp0(t, x2, z)|

≲|x1 − x2|β [ϱλk,−k−β(t, x1, z) + ϱλk,−k−β(t, x2, z)] .

Exercise 3.1. Prove Lemma 3.2.

Lemma 3.3. It holds that

|q| ≲ ϱλ,α−2; (3.11)

For any t ∈ [0, 1], x1, x2, y ∈ Rd and β ∈ (0, 1), it holds that

|q(t, x1, y)− q(t, x2, y)| ≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2(t, xi, y). (3.12)

Proof. We Claim that

|qn(t, x, y)| ⩽
(C1Γ(α/2))

n

(λ/π)d(n−1)/2Γ(nα/2)︸ ︷︷ ︸
=:γn

ϱλ,nα−2(t, x− y), (3.13)

where Γ is the Gamma function, and C1 and λ only depends on d, α,Λ and Ni.

By Lemma 3.2 and the Hölder regularity of a, we have

|q1(t, x, y)| = |[(L− La(y))p0](t, x, y)| ⩽ C1ϱλ,α−2(t, x, y).
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Assume (3.13) holds. This together with the fact that qn+1 = q1 ⊗ qn yields

|qn+1(t, x, y)|

⩽C1γn

ˆ t

0
(t− τ)

α
2
−1τ

nα
2
−1dτ

ˆ
Rd

ϱλ(t− τ, x− z)ϱλ(τ, z − y)dz

=C1

(
πλ−1

)d/2
γnϱλ(t, x− y)

ˆ t

0
(t− τ)

α
2
−1τ

nα
2
−1dτ

=C1

(
πλ−1

)d/2
γnϱλ,(n+1)α−2(t, x− y)B

(nα
2
,
α

2

)
=γn+1ϱλ,(n+1)α−2(t, x− y).

Therefore, we finish the proof for (3.13), which also implies

q =
∞∑
n=1

qn ≲ ϱλ,α−2.

Next, we verify that

|q1(t, x1, y)− q1(t, x2, y)| ≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) , (t, x, y) ∈ D. (3.14)

If |x1 − x2| >
√
t, then it is a consequence of (3.13). When |x1 − x2| ⩽

√
t, we have

|q1(t, x1, y)− q1(t, x2, y)|

⩽ |a (x1)− a (x2)| ·
∣∣∇2

xp0(t, x1, y)
∣∣+ |a (x2)− a(y)| ·

∣∣∇2
xp0(t, x1, y)−∇2

xp0(t, x2, y)
∣∣

≲ |x1 − x2|α ϱλ2,−2 (t, x1 − y) + |x2 − y|α |x1 − x2| ϱλ3,−3 (t, x2 − y − θ (x1 − x2))

≲ |x1 − x2|β ϱλ,α−β−2 (t, x1 − y) + |x2 − y|α |x1 − x2|β ϱλ,−β−2 (t, x2 − y)

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) .

Therefore, (3.14) holds for any (t, x, y) ∈ D. Noting that q = q1 + q1 ⊗ q, we have

|q(t, x1, y)− q(t, x2, y)|

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y)

+ |x1 − x2|β
ˆ t

0
(t− τ)

α−β
2

−1τ
α
2
−1dτ

∑
i=1,2

ϱλ (t, xi − y)

≲ |x1 − x2|β
∑
i=1,2

ϱλ,α−β−2 (t, xi − y) .

□

The above lemma implies that the infinite series in (3.6) do convergence, and p given by

(3.6) satisfying (3.7).

Lemma 3.4. There is a constant λ > 0 such that

|p| ≲ ϱλ, |∂tp|+ |∇2
xp| ≲ ϱλ,−2 (3.15)

and

[L− La(y))p](t, x, y) = q(t, x, y). (3.16)
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Proof. Recalling that p = p0 + p0 ⊗ q, by Lemma 3.2, we only need to prove

|∇2
xp0 ⊗ q| ≲ ϱλ,α−2. (3.17)

Note

∇2
x(p0 ⊗ q)(t, x, y) =

ˆ t

0

ˆ
Rd

∇2
xp0(t− τ, x, z) q(τ, z, y) dz dτ

=

ˆ t
2

0
· · ·+

ˆ t

t
2

· · · =: I1 + I2.

Thanks to Lemma 3.2 and Lemma 3.3,

|I1| ≲
ˆ t

2

0
ϱλ,−2(t− τ, x− z)ϱλ,α−2(τ, z − y) dzdτ

≲ϱλ(t, x− y)

ˆ t
2

0
(t− τ)−1τ

α
2
−1dτ ≲ ϱλ,α−2(t, x− y)

Noting that p0(t, x, z) = p0(t, x− z), we haveˆ
Rd

∇k
xp0(t, x, z) = 0, k ∈ N.

In view of (3.12), we get

|I2| =

∣∣∣∣∣
ˆ t

t
2

dτ

ˆ
Rd

∇2
xp0(t− τ, x, z) [q(τ, z, y)− q(τ, x, y)] dz

∣∣∣∣∣
≲
ˆ t

t
2

(t− τ)
β
2
−1τ

α−β
2

−1dτ

ˆ
Rd

[ϱλ(τ, y − z) + ϱλ(τ, x− y)] ϱλ(t− τ, x− z)dz

≲ϱλ,α−2(t, x− y).

Therefore, |∇2
xp| ≲ ϱλ,−2. Similarly, one can verify that |∂tp| ≲ ϱλ,−2. □

The above lemma implies

p(t, x, y) = p0(t, x, y) + [p0 ⊗ (L− La(y))p](t, x, y),

which yields that p satisfies ∂tp = Lp.

Proof of Theorem 3.1. (i). It is easy to verify that

v(t, x) :=

ˆ
Rd

p0(t, x, z)f(z)dz

convergence to f uniformly when f ∈ C0(Rd) as t → 0. In the light of (3.11), we have

|p0 ⊗ q| ≲ ϱλ,α, (3.18)

which yields that ∣∣∣∣ˆ
Rd

(p0 ⊗ q)(t, x, y)f(y)dy

∣∣∣∣ ≲ t
α
2 ∥f∥L∞ → 0.

Therefore, our desired assertion holds, due to the fact that p = p0 + p0 ⊗ q.

(ii) and (iii) follow directly as consequences of the maximum principle for parabolic equa-

tions.
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(iv) Thanks to Lemma 3.4, we only need to prove the lower bound estimate. There exists

constant T > 0 such that

p(t, x, y) ⩾ p0(t, x, y)−|p0⊗q|(t, x, y) ≳ t−
d
2 −t

−d+α
2 ≳ t−

d
2 , |x−y| <

√
t, t ∈ [0, T ]. (3.19)

If |x−y| >
√
t, let Let n be the least integer greater than 4|x−y|/

√
t, i.e. n−1 ⩽ 4|x−y|2/t <

n.

xi = x+ (y − x)i/n, Bi := B
(
xi, 8

−1
√
t/n
)

and ti = it/n.

Noting that for all zi ∈ Bi,

|zi − zi+1| ⩽ |zi − xi|+ |xi − xi+1|+ |xi+1 − zi+1| ⩽
√

t/n

2
,

by the on-digonal estimate (3.19), we have

p(ti+1 − ti, zi, zi+1) ⩾ c2(t/n)
− d

2 .

Hence, by the C-K equation, there is a constant c3 ∈ (0, 1) such that

p(t, x, y) ⩾
ˆ
Bn−1

· · ·
ˆ
B1

p(t1, x, z1) · · · p(tn − tn−1, zn−1, y)dz1 · · · dzn−1

⩾
[
c2(t/n)

− d
2

]n [
ωd

(√
t/(64n)

)d]n−1

⩾ t−
d
2 cn3n

d
2

⩾t−
d
2 c

4|x−y|2/t
3 (|x− y|2/t)

d
2 ≳ ϱλ(t, x, y).

□
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Appendix A. Probabilistic terminology

Let (Ω,F ,P) be a probability space and (E, E) be a measurable space. X : (Ω,F) → (E, E)
a measurable map, and G a σ-field ⊆ F .

When E = R, we define the conditional expectation of X given G, E(X|G), to be any

random variable Y that satisfies

(a) Y ∈ G;
(b) for all A ∈ G, E(X;A) = E(Y ;A).

QG : Ω×E → [0, 1] is said to be a regular conditional distribution (RCD) for X given

G if

(a) For each A ∈ E , ω 7→ QG(ω,A) is a version of E(1A(X)|G);
(b) For a.e. ω ∈ Ω, A 7→ QG(ω,A) is a probability measure.

If E = Ω, X(ω) = ω, then QG is called a regular conditional probability.

The following results can be found in Durrett’s book [Dur19].

Proposition A.1. (i) If G1 ⊆ G2 ⊆ F , then

E[(X|G2)|G1] = E(X|G1) (A.1)
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(ii) Assume that X ∈ F and Y ∈ G ⊆ F , then

E(XY |G) = E(X|G)Y. (A.2)

(iii) (Jesen’s inequality) If φ is a convex function, then

E(φ(X)|G) ⩽ φ(E(X|G)). (A.3)

Proposition A.2. Let QG be a RCD for X given G. If f : E → R satisfying E|f(X)| < ∞,

then

E(f(X)|G)(ω) =
ˆ
E
f(x)QG(ω,dx) a.s..

Theorem A.3. RCD exists if E is a standard measure space and E = B(E).

Proposition A.4. Assume X ⩾ 0, f : R+ → R+ such that f ∈ C1(R+) and f(0) = 0. Then

Ef(X) =

ˆ ∞

0
f ′(t)P(X > t)dt. (A.4)

Exercise A.1. If X ⩾ 0, f : R+ → R+ such that f ∈ C1(R+) and f(∞) = 0. Then

Ef(X) = −
ˆ ∞

0
f ′(t)P(X ⩽ t)dt. (A.5)

Appendix B. Maximal Principle

Consider the linear parabolic equation:

∂tu = aij∂iju+ bi∂iu+ cu,

where aij is uniformly elliptic, bi and c are bounded and continuous.

Proposition B.1 (Weak Maximum Principle). If c(x, t) ⩽ 0 and u is bounded, then

sup
R+×Rd

u = sup
{0}×Rd

u.

Proposition B.2 (Strong Maximum Principle). If u achieves its maximum (or minimum)

at an interior point (t0, x0) ∈ R+ × Rd, then u is constant in [0, t0]× Rd.
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